基于活性材料的执行器的集成添加剂制造可能会在跨生物医学工程,机器人技术或航空航天等学科的许多应用中取代常规电动机。在这项工作中,通过由热塑性粘合剂和金属粉末组成的3D打印的纤维打印来证明基于挤出的基于挤出的功能性NITI形状内存合金。两种合金是制造的,一种显示超弹性,另一种在室温下显示形状的内存特性。两种合金的微观结构均具有特征性的特征,并具有透明的热机械特性。3D打印的NITI显示形状的记忆应力为1。分别为1%的超弹性应变1。3%的施加应变为4%。为了扩大形状记忆应力执行器的几何形状,设计,制造和测试。这项研究的结果可能会在活动结构的增材制造领域中找到应用,也称为4D打印。通常,多种材料用于此类结构,这些结构通常会遭受机械性能和耐用性不佳的影响。在这项工作中对金属材料的使用可能有助于克服这些局限性。2022作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
独立于设备的量子密钥分发 (DIQKD) 提供了最强大的安全密钥交换形式,仅使用设备的输入输出统计数据即可实现信息论安全性。尽管 DIQKD 的基本安全原理现已得到充分理解,但为高级 DIQKD 协议推导出可靠且强大的安全界限仍然是一项技术挑战,这些界限要超越基于违反 CHSH 不等式而得出的先前结果。在这项工作中,我们提出了一个基于半有限规划的框架,该框架为使用不受信任设备的任何 QKD 协议的渐近密钥速率提供可靠的下限。具体而言,我们的方法原则上可用于基于完整输入输出概率分布或任何贝尔不等式选择来为任何 DIQKD 协议找到可实现的密钥速率。我们的方法还扩展到其他 DI 加密任务。
该文件计划于 2025 年 1 月 24 日在《联邦公报》上公布,并可在线查阅:https://federalregister.gov/d/2025-01712 和 https://govinfo.gov
作为基因编写领域的先驱,Tessera Therapeutics 正在通过完善将短信息或长信息插入任何基因组的能力来改变人类治疗疾病的方式。Tessera 寻求一种解决方案,以确保超过 12 TB 的科学数据在由湿科学家和计算生物学家组成的大型跨职能团队中可查找、可访问、可互操作和可重复使用 (FAIR)。Tessera 利用 Quilt 和 Nextflow 的组合来加速其基因编辑发现的上市。
摘要 —6G 技术的出现为物联网 (IoT) 的空前进步铺平了道路,开创了超连接和无处不在的通信时代。然而,随着 6G 物联网生态系统中互联设备的激增,恶意入侵和新网络威胁的风险变得更加突出。此外,人工智能融入 6G 网络带来了额外的安全问题,例如对抗性攻击人工智能模型的风险以及人工智能可能被滥用于网络威胁。因此,在 6G 环境中,保护广泛而多样的连接设备是一个巨大的挑战,需要重新考虑以前的安全传统方法。本文旨在通过提出一种依赖于人工智能和区块链技术的新型协作入侵检测系统 (CIDS) 来应对这些挑战。所提出的 CIDS 的协作性质促进了一种集体防御方法,其中物联网网络中的节点主动共享威胁情报,从而实现快速响应和缓解。通过全面的模拟和概念验证实验评估了所提系统的有效性。结果表明,该系统能够有效检测和缓解伪造和零日攻击,从而加强 6G 物联网环境的安全基础设施。索引术语 —AI、区块链、6G 网络、安全、协作入侵检测、零日攻击、安全
柑橘溃疡病影响柑橘生产。该病由柑橘黄单胞菌(Xcc)引起。先前的研究证实,在 Xcc 感染期间,转录激活因子样效应物 (TALE) PthA4 会从病原体转移到宿主植物细胞中。PthA4 与溃疡病易感基因 LOB1(EBE PthA4 -LOBP)启动子区中的效应物结合元件 (EBE) 结合,激活其表达,随后引起溃疡症状。之前,采用 Cas12a/CBE 共编辑方法破坏高度纯合的柚子的 EBE PthA4 -LOBP。然而,大多数商业柑橘品种都是杂合杂交种,更难产生纯合/双等位基因突变体。在这里,我们采用 Cas12a/CBE 共编辑方法来编辑 Hamlin(Citrus sinensis)的 EBE PthA4 -LOBP,这是一种在世界范围内种植的商业杂合柑橘品种。构建了二元载体 GFP- p1380N-ttLbCas12a:LOBP1-mPBE:ALS2:ALS1,并证明其可通过 Xcc 促进的农杆菌素过滤在 Hamlin 叶片中发挥作用。该构建体允许通过 GFP 选择无转基因再生体,编辑 ALS 以生成抗氯磺隆再生体作为基因组编辑的选择标记,这是通过 nCas9-mPBE:ALS2:ALS1 瞬时表达 T-DNA 的结果,并通过 ttLbCas12a 编辑感兴趣的基因(即本研究中的 EBE PthA4 -LOBP),从而产生无转基因柑橘。共产生了 77 株幼苗。其中 8 株幼苗为转基因植株(#Ham GFP 1 - #Ham GFP 8),4 株幼苗为非转基因植株(#Ham NoGFP 1 - #Ham NoGFP 4),其余为野生型。在 4 株非转基因幼苗中,三个品系(#Ham NoGFP 1、#Ham NoGFP 2 和 #Ham NoGFP 3)含有 EBE pthA4 的双等位基因突变,一个品系(#Ham NoGFP 4)含有 EBE pthA4 的纯合突变。我们在 C. sinensis cv. Hamlin 中实现了 EBE PthA4 – LOBP 的 5.2% 非转基因纯合/双等位基因突变效率,而之前研究中柚子的突变效率为 1.9%。重要的是,存活下来的 4 株无转基因植株和 3 株转基因植株均能抵抗柑橘
非常重要的是,标准涵盖了允许我们的设备互操作的技术组。蓝牙和 WIFI 是标准,汽车中的 OBD II 和智能手机上的 LTE 也是标准。由于标准化,所有设备的传输和数据处理方法都是相同的,因此设备制造商是谁并不重要。Apple 或三星的手机将能够访问相同的 WIFI 连接,福特或法拉利的检查引擎灯可以在同一家当地维修店读取。使用标准化技术对消费者、创新者和制造商都有广泛的好处,而实现这些好处的关键是专利制度。许多重要的高科技标准都是由来自许多公司的专家在标准制定组织 (SSO) 的支持下制定的。
1 柑橘研究中心“Sylvio Moreira” - 农学研究所 (IAC),Cordeiro ´ polis,巴西,2 生物研究所,坎皮纳斯州立大学 (Unicamp),坎皮纳斯,巴西,3 甘蔗研究中心 - 农学研究所 (IAC),里贝朗普雷图,巴西,4 里贝朗普雷图医学院,圣保罗大学 (USP),里贝朗普雷图,巴西,5 坎皮纳斯农学研究所 (IAC) 咖啡中心,坎皮纳斯,巴西,6 Embrapa 咖啡,巴西农业研究公司,巴西利亚,联邦区,巴西,7 生物学系,哲学、科学与文学学院,圣保罗大学 (USP),里贝朗普雷图,巴西,8 遗传学系,路易斯·德·凯罗斯农业学院 (ESALQ),圣保罗大学 (USP),皮拉西卡巴,巴西
