本说明的目的是告知所有全科医生 (GP) 诊所如何认可 COVID-19 初次接种、本地康复和海外康复者的海外疫苗接种情况。2. 所有年满 12 岁 1 且在海外接种疫苗并在进入新加坡时通过 ICA 验证其文件的个人,其疫苗接种状态将仅在 TraceTogether (TT) 应用程序上显示 30 天。为了在 30 天后享受针对疫苗接种的差异化安全管理措施 (SMM) 2,这些人可以前往全科医生诊所进行血清学检测,并让他们的海外 COVID-19 疫苗接种在新加坡得到认可。该服务的全部费用将由个人承担。3. 由于卫生部收到个人询问他们的疫苗接种状态多久会反映在 TT 和 HealthHub (HH) 应用程序上,因此鼓励全科医生告知个人完成该过程的预计时间。此外,强烈建议全科医生在获得血清学检测结果后尽快将疫苗接种记录输入 NIR。
“ Nrait D aavt 由 Arado T lugs en rver 3 cs G . m. b . H . • * ) Craft mant actnred bT Ne saer sc bsi tt A. a . **• ) “Piggy-Baclc” ei ror at t ;无人驾驶飞机连接至efi ahter ple ne vh3ch st eere t?
通过对氨基酸组成的极为精确的控制,用于特定应用。ELR被激发到弹性蛋白序列中,使它们获得了其几种有趣的特性,因此,ELR已成为多种生物应用应用的有用候选[14-16],显示出极好的生物相容性[17],生物降解性和可调节的机械性能和可调节的机械性能。对于3D生物打印应用,更有趣的是,它们表现出由所谓的反温度转变(ITT)定义的热反应性的智能行为。so,在重组剂的水溶液中,低于重组者的过渡温度(TT),聚合物链仍然可溶于由疏水水合构成的随机线圈。如果温度升高到聚合物的TT以上,则诱导疏水性折叠[18],当使用高浓度时会导致水凝胶形成。可以将这种可逆的相变为3D架构矩阵。在设计ELR必须表现出的分子结构以表现为墨水时的难度在于在其自组装过程中诱导可打印性和稳定性的特性,使其自由组装成超分子水凝胶。因此,我们的研究假设是
为研究玻璃珠增强热塑性塑料的弹性和粘弹性力学行为,用脉冲激励技术 (IET)、动态力学分析 (DMA) 和拉伸试验 (TT) 测试了两种复合材料。在 20 至 200°C 的温度范围内,以 1、2、5、10 和 20 Hz 的频率对纯聚酰胺 66 和聚对苯二甲酸丁二醇酯及其复合材料 (分别为 30/40 wt-% 和 20/30 wt-%) 进行了 3 点弯曲 DMA 测试。Williams、Landel 和 Ferry (WLF) 理论允许通过确定样品在室温下的特征频率,将频率相关的“破坏性” DMA 测量的弯曲模量与弯曲模式下的非破坏性 IET 测量进行比较。同样,将纵向模式下的 IET 模量与应变率为 1、10 和 100 %/min 的 TT 杨氏模量进行了比较。两种比较都提供了与标准偏差高度一致的模量。此外,还采用了立方体中的立方体模型方法来模拟界面粘附效应,并计算出不同测量技术的合理粘附系数 k adh。
怀孕期间接种破伤风疫苗是保护新生儿免受疾病侵害的有效方法。破伤风疫苗有单独类毒素 (TT)、与白喉类毒素 (Td) 或与白喉和百日咳疫苗联合 (Tdap) 的形式。美国建议孕妇在每次怀孕后 27-36 周内接种一剂 Tdap 疫苗 [4]。世界卫生组织建议使用 Td 进行破伤风免疫 [3]。在土耳其,根据卫生部的建议和免疫咨询委员会的决定 7 ,自 2004 年 8 月以来,开始使用 Td 疫苗代替 TT 疫苗。根据世界卫生组织的 MNT 消除策略,土耳其还制定了将每个地区的 NT 病例数减少到千分之一活产婴儿中不到 1 例并确保消除 MT 的目标。因此,初级卫生保健中心为所有孕妇免费接种破伤风疫苗 7 。土耳其卫生部建议所有儿童时期未接种疫苗、疫苗接种情况不明、未完全接种疫苗或未接受过疫苗接种的孕妇
使用 Takens 定理评估 EEG 轨迹:大脑动力学的区域变化 Arturo Tozzi(通讯作者) 美国德克萨斯州登顿市北德克萨斯大学物理系非线性科学中心 1155 Union Circle, #311427 Denton, TX 76203-5017 USA tozziarturo@libero.it Ksenija Jaušovec 马里博尔大学心理学系 ksenijamarijausovec@gmail.com 摘要 Takens 定理 (TT) 证明动态系统的行为可以在多维相空间内有效重建。这为检查时间序列数据的时间依赖性、维度复杂性和可预测性提供了一个全面的框架。我们应用 TT 来研究健康受试者 EEG 大脑动力学的生理区域差异,重点关注三个关键通道:FP1(额叶区域)、C3(感觉运动区域)和 O1(枕叶区域)。我们使用时间延迟嵌入为每个 EEG 通道提供了详细的相空间重建。重建的轨迹通过测量轨迹扩展和平均距离进行量化,从而深入了解传统线性方法难以捕捉的大脑活动的时间结构。发现三个区域的变异性和复杂性不同,显示出明显的区域差异。FP1 轨迹表现出更广泛的扩展,反映了与高级认知功能相关的额叶大脑活动的动态复杂性。参与感觉运动整合的 C3 表现出中等变异性,反映了其在协调感觉输入和运动输出方面的功能作用。负责视觉处理的 O1 显示出受限且稳定的轨迹,与重复和结构化的视觉动态一致。这些发现与不同皮质区域的功能特化相一致,表明额叶、感觉运动和枕叶区域具有自主的时间结构和非线性特性。这种区别可能对增进我们对正常大脑功能的理解和促进脑机接口的发展具有重要意义。总之,我们证明了 TT 在揭示脑电图轨迹区域变化方面的实用性,强调了非线性动力学的价值。关键词:脑电图分析;脑动力学;相空间重建;区域变化。引言人类大脑是一个复杂的非线性系统,善于通过动态交互处理大量信息(Khoshnoud 等人,2018 年;Zhao 等人,2020 年;Dai 等人,2022 年;Biloborodova 等人,2024 年)。脑电图 (EEG) 是一种非侵入性、高分辨率的脑活动研究方法。尽管如此,传统的线性分析技术往往无法表示脑电图信号复杂的非线性特征(Alturki 等人,2020 年)。为了解决这一限制,非线性动力学和混沌理论已成为理解大脑活动的有力框架,其中 Takens 定理(以下简称 TT)奠定了基础。TT 确定了动态系统的行为可以在多维相空间中使用来自观测数据的单个时间序列的时间延迟版本重建(Takens 1981)。在 EEG 分析中,TT 提供了一种强大的数学工具来研究时间演变,揭示了线性方法无法发现的特性(Rohrbacker 2009)。通过重建相空间,研究人员可以分析关键的 EEG 动态特性,例如时间依赖性、维度复杂性和可预测性(Kwessi 和 Edwards,2021)。这种方法已被证明可用于识别与各种认知和病理状况相关的神经动力学变化(Fell 等人,2000 年)。先前的研究强调了 TT 在分析脑电信号方面的有效性,尤其是在识别癫痫、阿尔茨海默病和精神分裂症等病理状况方面(Kannathal 等人,2005 年;Altındi ş 等人,2021 年;Cai 等人,2024 年;Al Fahoum 和 Zyout,2024 年)。然而,人们较少关注这种方法在正常条件下评估大脑动态区域变化的应用。不同的大脑区域表现出不同的电活动模式,反映了它们在认知、感觉和运动功能中的特殊作用。例如,额叶区域 (FP1) 与决策和工作记忆等高级认知过程有关。感觉运动皮层 (C3) 控制运动并整合感觉输入,而枕叶区域 (O1) 处理视觉信息。尽管这些区域的作用独特,但它们之间的相互作用有助于大脑的整体动态。2024)。然而,人们较少关注这种方法在正常情况下评估大脑动态区域变化的应用。不同的大脑区域表现出不同的电活动模式,反映了它们在认知、感觉和运动功能中的特殊作用。例如,额叶区域(FP1)与决策和工作记忆等高级认知过程有关。感觉运动皮层(C3)控制运动并整合感觉输入,而枕叶区域(O1)处理视觉信息。尽管它们的作用独特,但这些区域之间的相互作用有助于大脑的整体动态。2024)。然而,人们较少关注这种方法在正常情况下评估大脑动态区域变化的应用。不同的大脑区域表现出不同的电活动模式,反映了它们在认知、感觉和运动功能中的特殊作用。例如,额叶区域(FP1)与决策和工作记忆等高级认知过程有关。感觉运动皮层(C3)控制运动并整合感觉输入,而枕叶区域(O1)处理视觉信息。尽管它们的作用独特,但这些区域之间的相互作用有助于大脑的整体动态。
如果没有出现特殊情况,本文件自发布之日起将在互联网或其未来的替代品上保存较长一段时间。访问该文档意味着允许任何人阅读、下载、打印单份供个人使用,以及将其原封不动地用于非商业研究和教学。以后转让版权不能撤销此许可。对本文档的任何其他使用均需征得作者同意。为了保证真实性、安全性和可用性,有技术和管理性质的解决方案。作者的知识产权包括在以上述方式使用文档时良好实践所要求的范围内署名作者的权利,以及防止文档被更改或以此类形式或以此类方式呈现的权利。冒犯作者的文学或艺术声誉或个性的上下文。有关林雪平大学电子出版社的更多信息,请访问出版商的网站 http://www.ep.liu.se/