β-Gallium氧化物(β-GA 2 O 3)是一种宽带gap的半子导管,具有潜在的高频和高功率设备。[1 - 3]在Ga 2 O 3的五个多晶型物中,β -ga -ga 2 O 3是最稳定的。[4]它具有单斜结构,属于c 2 / m的空间组。[5]为简单起见,ga 2 o 3表示以下文本中的β -ga 2 o 3。随着GA 2 O 3外延技术的发展,两英寸的GA 2 O 3底物已商业化,[6],使用SN或SI的N型掺杂技术已经成熟。[1] GA 2 O 3设备织物和P型掺杂技术是当前GA 2 O 3研究中的两个主要问题。很难以纯GA 2 O 3结晶形式分离不同的相。[7]因此,模拟和填充已被用于预测GA 2 O 3晶体和降低特性。例如,他等人。通过密度功能理论(DFT)计算了频带结构。[5] Osipov等。计算了结构和弹性塑性特性,包括杨的模量和线性可压缩性。但是,直到现在,基于有限元方法的GA 2 O 3设备模拟已经稀缺了,这主要是因为GA 2 O 3不是Ma-Jor设备仿真软件中良好的半导体材料,并且宽带式半径模拟的模拟很难融合。[9]
本文的主要贡献是对不同的提取方法进行了比较研究,并在很大的温度范围内进行了测试(从极低的温度 100 K 到室温 300 K)。更准确地说,已经开发了四种技术来解决这个问题,例如 Cheung [ 1 ]、PSO、ABC 和 DE。关于所使用的启发式技术,PSO 算法最初模仿生物的社会行为和运动,例如一群鸟或一群鱼。同时,ABC 算法模拟了自然界中蜜蜂的觅食行为。而最后一种算法,即 DE,是一种基于种群的算法,旨在解决实际的优化问题。该算法需要四个主要步骤,例如初始化、突变、重组和选择。有关这些算法的更多详细信息,请参阅参考文献 [ 5、11、12 ]。
包括GAN,INN,ALN和ZnO的极性 - 肺导体的非中心对称晶体结构在研究了其菌株诱导的纳米能产生的潜力方面对科学共识感兴趣。耦合的半导体和压电性能产生了一个压电电源,可调节跨其异质结构界面的电荷传输。通过使用导电性原子显微镜,我们研究了在钼(MO)底物上生长的α纳米线(NWS)中产生的压平作效应的机制。通过使用PT – IR探针在NWS/MO结构上施加外部偏置和力,可以调节跨两个相邻的Schottky连接的电荷转运,这是由于明显的Schottky屏障高度(SBHS)的变化,而Schottky屏障高度(SBHS)是由于应变诱导的压电电位而导致的。对于背景力,我们测量了SBH的增加为98.12 MeV,该背景力对应于SBH变化∂ϕ∂F为6.24 MeV/nn,对于半导体/Ti/Mo界面。SBH调制负责对压电效应,通过测量从室温到398 K的温度依赖性I – V曲线进行进一步研究。从Algan NWS/Mo棚的独特结构中获得的见解,这些见解是在Algan/Mo Shed的独特结构上,对Metal-Sendoctor interface的电子特性以及Algan n Nw nw nw nw piquzoe nw pique的电子特性的启发光电子,传感器和能源产生应用。
图 1:(a) 具有铁磁触点的 h-BN 封装单层 WSe 2 隧道器件示意图 (b) 器件的光学显微镜图像。矩形部分(红色)表示封装结构;定义触点之前的封装样品的光学图像。(c) (顶部) 单层 WSe 2 相对于直接接触材料铂的能级图;(底部) 在有限偏压和超阈值栅极电压下的正向偏压条件下的漏源电流示意图。请注意,在我们的器件中,多数电荷载流子是空穴。围绕铁磁触点弯曲的能带未缩放。(d) 4.7K 下单层 WSe 2 的光致发光 (PL) 光谱仪(X o 表示中性激子峰);(插图)同一单层 WSe 2 的室温 PL 光谱显示单层中集体激发的单个特征峰在 1.67 eV 处。