1火炬联盟范普普医学与健康科学学院,安特卫普大学,安特卫彭,比利时,比利时,2计算机科学系,阿德雷姆数据实验室,安特卫普大学,安安特维尔普大学,比利时,比利时,内科和感染性疾病系3非洲,南非开普敦大学开普敦大学临床药理学系5号医学系,美国田纳西州纳什维尔市范德比尔特大学医学中心6医学系,美国田纳西州纳什维尔市,7台内科疾病系7,卫生科学系,自由州,BloeMfontein,BloeMfontein,Bloeemfontioum,Bloeemfontectium,BloeMfontein,Scorce,Scorce,Scorce DSI-NRF生物医学结核病研究研究中心,SAMRC结核病研究中心,分子生物学和人类遗传学部,南非开普敦Stellenbosch University,Soutry Institute,South Drivai非洲,南非布隆方丹自由州大学医学微生物学系12号,南非自由州卫生部13
结核分枝杆菌是结核病 (TB) 的病原体,仍然是全球健康负担。虽然结核分枝杆菌主要是一种呼吸道病原体,但它可以扩散到其他器官,包括大脑和脑膜,导致结核性脑膜炎 (TBM)。然而,人们对导致跨器官差异疾病的免疫机制知之甚少。人们的注意力集中在控制肺部结核分枝杆菌的 T 细胞反应差异上,但新出现的数据指出抗体作为疾病控制的生物标志物和抗菌分子发挥着作用。鉴于人们对血脑屏障跨区室抗体反应的认识日益加深,我们在此表征了 TBM 中血液和脑区室的抗体谱,并确定肺部结核分枝杆菌感染 (肺结核) 和 TBM 之间结核分枝杆菌特异性体液免疫反应是否不同。采用高通量系统血清学方法,我们深入分析了 HIV 阴性成人肺结核 ( n = 10) 和 TBM ( n = 60) 患者针对 10 种不同结核分枝杆菌抗原(包括脂阿拉伯甘露聚糖 (LAM) 和纯化蛋白衍生物 (PPD))的抗体反应。抗体研究包括免疫球蛋白同种型 (IgG、IgM、IgA) 和亚类水平 (IgG1–4) 的分析以及结核分枝杆菌特异性抗体结合 Fc 受体或 C1q 并激活先天免疫效应功能(补体和自然杀伤细胞活化;单核细胞或中性粒细胞吞噬作用)的能力。机器学习方法被用于表征 TBM 中的血清和 CSF 反应,确定与疾病严重程度相关的预后因素,并确定区分 TBM 和肺结核的关键抗体特征。在患有 TBM 的个体中,我们发现脑脊液特异性抗体谱标志着针对结核分枝杆菌的独特且区室化的体液反应,其特征是结核分枝杆菌特异性抗体的富集,这些抗体能够强效激活补体并驱动单核细胞和中性粒细胞的吞噬作用,所有这些都与表现时的 TBM 严重程度较低有关。此外,与患有肺结核的个体相比,患有 TBM 的个体血清中存在结核分枝杆菌特异性抗体,激活单核细胞吞噬作用的能力增强,尽管 IgG 滴度和 Fc γ 受体结合能力较低。总的来说,这些数据表明体液反应在功能上有所不同,具体取决于感染部位(即肺部与大脑),并表明 TBM 中脑脊液内存在高度区室化的结核分枝杆菌特异性抗体反应。此外,我们的结果表明,吞噬作用和补体介导的抗体可能促进神经病理学减弱和 TBM 疾病减轻。
经常消费高糖饮料(HSD),包括糖粉饮料与肾脏疾病的发展有关。否则,从Jicama(Pachyrhizus Erosus L.,Fabaceae)提取的饮食纤维的适当摄入量显示出针对HSD诱导的代谢综合征(包括糖尿病)的反活性作用。然而,是否在饮食中掺入jicama纤维是否可以对肾功能产生有益的作用。这项研究旨在阐明Jicama纤维在饮食中对HSD引起的肾脏疾病的保护作用。将总共三十只成年雄性白化病小鼠随机分为三组,即对照组(蒸馏水和标准饮食和标准饮食),高核饮料组(HSD;喂30%的蔗糖溶液饮料和标准饮食),以及高核饮料 + JF饮料组(HSD + JF; FED + JF; FEL fe fe fe fe fe fe fe fe fe fe fe fe; fel 30%套用的饮食饮料和标准饮料均为25%的25%。进行处理十周,然后测量禁食血糖,血浆肌酐和肾脏指数,包括尿液蛋白,尿液特异性重力和折射率,以及检查肾脏中组织病理学改变的检查。结果表明,以25%的剂量在饮食中掺入JF可以有效抵消空腹血糖的升高以及肾脏损伤的指标,包括血浆肌酐,尿液蛋白,尿液特异性重力和由HSD引起的尿液折射率。但是,JF无法防止HSD诱导的肾脏质量减少,但可以改善肾脏的组织病理学改变。此外,JF有效防止了经HSD处理的小鼠肾脏中的肾小管萎缩和纤维化。因此,以25%的剂量补充JF可以有效保护肾脏免受HSD的影响。因此,适当食用的Jicama Tuber饮食纤维具有减少HSD诱导的肾脏疾病的潜力。
肠道菌群由消化道中的微生物组成,在维持整体健康方面发挥着关键作用。研究人员发现该生态系统与不同器官和系统之间存在联系,影响免疫、代谢和功能。在这些联系中,肠肺轴是一个复杂的区域,有可能改变结核病 (TB) 和耐药性的治疗。此外,肠道菌群会影响结核病药物的代谢。结核分枝杆菌感染是一个全球性的健康问题,需要有效的控制措施,而对人类微生物群的研究起着至关重要的作用 (Wu et al., 2023)。了解肠道菌群、免疫系统和药物代谢之间的相互关系可以导致针对性治疗,解决结核病感染和耐药性的根本问题。微生物群组成的不平衡是结核分枝杆菌发病机制和药物代谢的重要因素。然而,很少有研究探讨结核分枝杆菌感染如何与肠肺轴微生物群组成相互作用。本研究主题旨在揭示这种联系,强调肠肺轴和耐药性在结核病管理策略中的重要性。重点是结核分枝杆菌,但也包括对其他分枝杆菌科菌株的研究。在这个研究主题中,已经发表了五篇文章,扩大了我们对肠肺轴在结核病感染和耐药性中的作用的理解。
结核病(TB)是全球第二大流行的疾病,仅次于冠状病毒病(Covid-19)。全球,2022年,大约有1060万人因结核病生病,反映了2020年增长4.5%。中,有130万人死于结核病,其中包括与人类免疫缺陷病毒(HIV)共同感染的病例(1)。虽然肺结核(PTB)主要影响肺部,但肺外结核病(EPTB)涉及体内其他器官和组织(2)。根据WHO,EPTB占2020年全球新的和复发性结核病病例的16%。在埃塞俄比亚,两种形式的结核病构成了重大的公共卫生威胁,在EPTB案件方面,该国在全球范围内排名第三,超过了许多其他地区观察到的PTB负担(3)。值得注意的是,在2020年,EPTB占埃塞俄比亚报告的病例的30%(4)。
。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
Chen-Yu Tsai,1 Myo OO,1 Jih Hou Peh,2 Benjamin C.M.Yeo,3 Ariel Aptekmann,1 Bernett Lee,4,5,6 Joe J.J. Liu, 2 Wen-Shan Tsao, 1 Thomas Dick, 1,7 Katja Fink, 4 and Martin Gengenbacher 1,7,8, * 1 Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA 2 Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore 3 Infectious Diseases Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 2, Blk MD4, 5 Science Drive 2, Singapore 117545, Singapore 4 Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore 5 Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore 6 A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, 8A Biomedical Grove #05-13, Immunos,新加坡138648,新加坡7 Hackensack Meridian医学院,Nutley,NJ 07110,美国8铅联系 *通信 *通信:martin.gengenbacher@gmail@gmail.comYeo,3 Ariel Aptekmann,1 Bernett Lee,4,5,6 Joe J.J. Liu, 2 Wen-Shan Tsao, 1 Thomas Dick, 1,7 Katja Fink, 4 and Martin Gengenbacher 1,7,8, * 1 Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA 2 Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore 3 Infectious Diseases Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 2, Blk MD4, 5 Science Drive 2, Singapore 117545, Singapore 4 Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore 5 Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore 6 A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, 8A Biomedical Grove #05-13, Immunos,新加坡138648,新加坡7 Hackensack Meridian医学院,Nutley,NJ 07110,美国8铅联系 *通信 *通信:martin.gengenbacher@gmail@gmail.com
人工智能(AI)正在迅速转化结核病(TB)诊断。它正在解决准确性,效率和可及性方面的长期挑战。传统的诊断方法虽然有效,但通常会受到诸如敏感性变化和漫长的周转时间之类的局限性。AI技术,包括机器学习和深度学习算法,通过自动分析胸部X射线,基因组数据和临床参数来提供创新的解决方案。这些进步有望提高诊断准确性,加快治疗启动和个性化医学方法。但是,成功实施需要克服与数据质量,与医疗保健系统集成以及道德考虑有关的挑战。向前迈进,本文阐明了AI驱动的结核病诊断,该诊断有望通过增强的检测能力和优化的治疗策略来增强全球医疗保健结果。
Vivian Cox 医学博士,杨森结核病研发临床负责人“杨森 LA/ER 结核病管道现状”背景 – 结核病 (TB) 药物的 LAI 制剂。用途。• 潜伏性结核感染 (LTBI) 治疗与纳入结核病 (TBD) 治疗方案。• 用于预防或治疗的伴随 LA 药物。提高依从性的潜力。• 必须考虑注射剂 (IM 或 SC) 的可接受性,尤其是对于受益于 TPT 的幼儿。• 应将患者偏好研究和患者报告的结果纳入临床开发。可能的结核病指征。• 单剂量或间歇性 TPT 非常适合目前的 ART 服务提供模式。• 缩短疗程的 TBD 治疗(例如,口服引导以进行培养转化,然后服用一到两剂 LAI 制剂)。理想的肠外 LTBI 方案 (TPP) 的关键属性。 • 针对药物敏感 (DS) 和耐药 (DR) 结核病的活性。• 单次注射(体积 2mL;≤25 号针头)或植入。开发用于 TPT 的 LAI Bedaquiline (BDQ) 的考虑因素。良好的化学、制造和控制 (CMC) 特性。• 低水溶性 (0.0002mg/mL);低血浆清除率 (0.04mcg/h/kg);以及对 Mtb 的低 MIC(0.03mcg/mL;高
结核病(TB)是由结核分枝杆菌引起的疾病,对全球健康是严重威胁。可用于检测和鉴定引起TB的细菌的方法是定量聚合酶链反应(QPCR)。在这种方法中,变性和延长温度是需要优化成功的决定因素之一。这项研究旨在优化DNA M.结核病的扩增中的变性和延长温度。使用准实验设计的研究。最优化的温度为93、94、95、96和97°C,用于扩展为58、59、60、61和62°C。测试样品是从结核分枝杆菌的患者收集的痰液样本,对异念珠菌具有抗性。优化是使用七个测试引物,即S315T,S315N,S315I,S315R,S315G,S315G,S315L和R463B,具有KATG基因的靶标。优化数据通过MS Excel处理最低的CT值。结果表明,使用的每个引物的最佳变性温度各不相同。主要的S315T,S315R和S315G在96°C的变性温度下最佳,最佳S315N在94°C时,主要S315i和R463B在93°C下最佳的R463B,最佳的S315L引物在95°C,最佳的S315L引物,最佳使用的温度为96°C. 96°C. 在58°C下的最佳延伸温度,用于原代S315N,S315N,S315I和R463B,初级S315R和S315G在60°C下,初级S315L在61°C下为61°C。 可以得出结论,变性研究的最佳温度为96°C,延伸为58°C。。在58°C下的最佳延伸温度,用于原代S315N,S315N,S315I和R463B,初级S315R和S315G在60°C下,初级S315L在61°C下为61°C。可以得出结论,变性研究的最佳温度为96°C,延伸为58°C。