锂离子电池(LIB)由于其高能量密度,较长的循环寿命,低自我放电速率和不效应而广泛用于新的能量车辆和电子设备中。1 - 4作为电池的关键组成部分,分离器不仅隔离阳极和阴极,以避免内部短路,而且还允许在整个多孔结构中运输液体电解质中的锂离子。5,6,如今,商业聚n分离剂,例如聚乙烯(PE),聚丙烯(PP)及其化合物,由于其出色的机械强度,良好的电型稳定性和合理的成本,通常用于LIBS中。7,8然而,它们的较差的热稳定性会导致分离器在较高的温度下容易收缩,从而导致雷和爆炸事故。此外,低电解质润湿性限制了高性能电池的发展。9,10
摘要。粉煤灰,塑料废物和粘土是马来西亚常见的矿物质和残留物。在这项研究中,这些材料被充分利用为合成碳纳米管(CNT)的原材料。回收的聚丙烯先前用作食品容器,用作碳源。粉煤灰和粘土被探索为CNTS生长的潜在底物。在惰性环境中,在900°C的90分钟内将回收的聚丙烯热分解。在此过程中释放的碳原子被沉积在粉煤灰和粘土底物上,粉煤灰和粘土底物已浸入二代封溶液中,以提供CNTS生长的金属催化剂。使用扫描电子显微镜(SEM)和X射线衍射(XRD)对沉积产物进行表征。形态分析表明,粉煤灰和粘土都涂有纤维样结构,根据与XRD模式约26°的衍射峰确认为CNT。总而言之,粘土和粉煤灰证明了被用作CNT形成的底物的潜力。关键字:催化热分解;黏土; cnts;粉煤灰;再生聚丙烯1。简介
迄今为止,对碳纳米管的热运输物理学的理解仍然是一个开放的研究问题[1-10]。Experimentally, on the one hand, the thermal transport in single-wall carbon nanotubes (SWCNTs) is measured to be nondiffusive with divergence of thermal conductivity ( κ ) for tube lengths of up to 1 mm [ 6 , 8 ], as suggested by the Fermi, Pasta, Ulam (FPU), and Tsingou model [ 11 ], on the other hand, the κ is recently reported to converge for因此,管长的长度仅为10μm[12],突显了SWCNT的实验测量和热传输结果的解释[13]。基于声子散射选择规则的早期理论研究表明,长波长膨胀声音和扭曲 /旋转 /旋转 /旋转声音声子模式(统称为横向模式,以下是以下是横向模式)的非散射。这是通过使用Boltzmann转运方程(BTE)的迭代溶液获得的数值依赖性的声子特性的确定确定的,在这些迭代溶液中,在没有拼音子散射的情况下发现κ在差异[7]。但是,这些理论预测和数值依赖性的声子的性质是通过仅考虑三个子过程而获得的,并且尚不清楚当高级四阶四个频率过程中考虑到[7,9]时,长波长横向声子是否保持不变。基于分子动力学模拟的其他计算方法自然可以将声子非谐度包括到最高级。但是,由于几个然而,对于具有平衡分子动力学的SWCNT,这些模拟仍然是不合理的[5,15],并且直接的分子染料表明κ的长度依赖性至少为10μm[4,16]。随着计算资源的最新进展,现在有可能通过基于BTE的方法在声子传输属性的预测中包括高阶四声音程序[17-21]。
记录的版本:该预印本的一个版本于2024年4月3日在聚合物研究杂志上发表。请参阅https://doi.org/10.1007/s10965-024-03962-0。
摘要环保导电棉纺织品是可穿戴设备中柔性底物的有希望的替代方法,因为棉花是一种廉价的天然织物材料,并且在现代便携式电子设备中兼容,具有足够的电导率。在这项工作中,使用碳质纳米材料(例如碳纳米管(CNT))和石墨烯和额外的导电银(AG)粉末和纺织墨水的碳质纳米材料(例如碳纳米管(CNT)),通过屏幕打印方法制备了柔性导电棉电极。制备的导电棉电极以及较高的质量负载(20-30 mg cm -2)表现出较低的板电阻(<10Ω)。在制备的棉电极的性能下,成功制造了全纤维状态的柔性超级电容器装置,该设备表现出高度特异性的677.12 MF cm -2,在0.0125macm-2时,使用AG和40%CNTOLE的电极组合物(60%),使用AG和40%Cntole)。使用不同的弯曲角度(0,30,45,45,60和90)在严重的机械变形下稳定的电化学性能稳定,并且即使在3000 CV循环后,电容保持范围即使在〜80%的情况下具有出色的环状稳定性,并且具有出色的循环稳定性。
通过定向冰模板法制备了基于具有各向异性结构的纤维素纳米晶体 (CNC) 和多壁碳纳米管 (MWCNT) 的轻质且机械强度高的混合泡沫。各向异性混合 CNC-MWCNT 泡沫表现出高度各向异性的热导率和方向相关的电磁干扰 (EMI) 屏蔽性,对于含有 22 wt% MWCNT 的混合泡沫,在 8 到 12 GHz 之间最大的 EMI 屏蔽效率 (EMI-SE) 为 41–48 dB。EMI-SE 主要由吸收 (SE A ) 决定,这对于微波吸收器应用非常重要。低径向热导率的建模强调了声子散射在异质 CNC-MWCNT 界面处的重要性,而轴向热导率主要由沿取向的棒状颗粒的固体传导决定。轻质 CNC-MWCNT 泡沫结合了各向异性热导率和 EMI 屏蔽效率,这种特性十分独特,可用于定向热传输和 EMI 屏蔽。
基于纤维素纳米晶体(CNC)和具有各向异性结构的多壁碳纳米管(MWCNT)的轻质和机械强大的杂化泡沫是通过方向性冰冰期来制备的。各向异性杂交CNC-MWCNT泡沫表现出高度各向异性的导热性和方向依赖性的电磁干扰(EMI)的屏蔽(EMI)屏蔽,最大的EMI屏蔽率(EMI-SE)为41-48 db,为8和12 GHZ之间的41-48 db和12 ghz之间的22 for hybrId foam for hybrid foam之间。EMISE由吸收(SE A)主导,这对于微波吸收器应用很重要。对低径向热导率的建模强调了声子散射在异质CNC-MWCNT接口处的重要性,而轴向导热率则由沿对齐的杆状粒子沿固体传导支配。轻巧的CNC-MWCNT泡沫组合的各向异性导热率和EMI屏蔽效率的效率是不寻常的,并且对于方向性热传输和EMI屏蔽非常有用。
被发现位于SWNT-BN的B原子上,SWNT-C上的C-C = C上。该观察结果强调了B原子在SWNT-BN中接受电子的能力以及SWNT-C中碳原子之间的π键的定位。此外,对于DWNT,特别是DWNT-BN,HOMO位于内壁(IW)和外壁(OW)的N原子上,而Lumo则位于IW和OW中的B原子上(见图2(E,F)。 相比之下,对于DWNT-C,HOMO位于IW的碳原子上,而Lumo位于OW的碳原子上(见图 2(g,h)。 这种区别强调了碳原子在IW中作为电子供体和碳原子作为电子受体的作用。 这些数字还展示了掺杂的DWNT-C变体的同性恋和Lumo mos。2(E,F)。相比之下,对于DWNT-C,HOMO位于IW的碳原子上,而Lumo位于OW的碳原子上(见图2(g,h)。这种区别强调了碳原子在IW中作为电子供体和碳原子作为电子受体的作用。这些数字还展示了掺杂的DWNT-C变体的同性恋和Lumo mos。