晚期实体瘤患者的治疗通常涉及多模态疗法(包括手术、化疗、放疗、靶向治疗和/或免疫治疗),但通常最终无效。核酸药物,无论是作为单一疗法还是与标准疗法相结合,都正在迅速成为一种新型疗法,能够在其他难治性肿瘤中产生反应。这些疗法包括使用病毒载体的疗法(也称为基因疗法),其中一些疗法现已获得监管机构的批准,以及含有 mRNA 和一系列其他核苷酸的纳米颗粒。在本综述中,我们描述了病毒和非病毒核酸疗法的开发和临床活动,包括它们的作用机制、耐受性和来自实体瘤患者的可用疗效数据。我们还描述了肿瘤微环境对全身给药和局部给药药物输送的影响。最后,我们讨论了正在进行的临床试验和临床前测试以及制造和/或稳定性考虑所产生的重要趋势,这些趋势有望为针对实体肿瘤患者的下一代核酸药剂奠定基础。
客观 - 解决术中超声中识别和描述脑肿瘤所带来的挑战。我们的目标是在经验丰富的神经肿瘤内超声用户(神经外科医生和神经神经毒物学家)中,在质量和定量评估观察者之间的变化,在超声波上检测和分割脑肿瘤。然后,我们建议,由于这项任务的固有挑战,通过将整个肿瘤质量进行注释,可以用一个边界盒作为临床培训的分割的辅助解决方案,包括余量不确定性和大型数据集的策划。方法 - 30例患者的脑病变的30张超声图像由4个注释剂 - 1名神经放射科医生和3个神经外科医生。首先测量了3个神经外科医生的注释变化,然后将每个神经腐烂的注释分别与神经放射科医生的注释分别进行比较,神经放射科医生的术语是参考标准,因为它们的分割是通过交叉引用到术前MRI进一步完善的。使用了以下统计指标:相交
铂类耐药性疾病和新疗法铂类耐药性疾病仍然是 TGCT 的治疗挑战,目前尚无关于实现疾病缓解的最佳挽救治疗的共识。目前,在此情况下使用几种基于铂类的标准剂量化疗方案 - VeIP(长春花碱 + 异环磷酰胺 + 顺铂)、VIP(依托泊苷 + 异环磷酰胺 + 顺铂)、TIP(紫杉醇 + 异环磷酰胺 + 顺铂)和 EP(依托泊苷 + 顺铂)31 – 33 ,以及高剂量化疗后进行自体骨髓移植 34 – 38 。这种情况的复杂性和频率意味着指南建议此类治疗应在专科中心进行。该领域取得进展的关键是多中心和跨国合作。这种合作得益于国际生殖细胞肿瘤组织的发展,例如国际全球生殖细胞肿瘤合作组 (G3) 和恶性生殖细胞国际联盟 (MaGiC)。
最终评估文件 – larotrectinib 用于治疗 NTRK 融合阳性实体肿瘤 第 10 页,共 34 页
deosumab是一种完全人性化的单克隆抗体(核因子kappa b配体),可抑制等级 - rankl相互作用。骨(GCTB)过表达的巨细胞肿瘤的单核基质细胞,这是募集,形成,增强功能增强和骨细胞状巨细胞存活的必不可少的介体。为此,RANKL与巨细胞表面的等级相互作用。这种相互作用是由Denosumab与RANKL结合的。因此,破骨细胞从肿瘤组织中消失,并且主要被松散的结缔组织和新形成的骨骼所取代。H3F3A-阳性基质细胞,从而强调了denosumab在肿瘤基质细胞上的无效性(1)。
卵巢成人颗粒细胞瘤 (aGCT) 是一种罕见的卵巢基质肿瘤,约占卵巢恶性肿瘤的 2-5% [ 1 , 2 ]。大多数 aGCT 在早期诊断,并通过手术切除治愈性治疗。不幸的是,大约 10-20% 的患者会复发,肿瘤会扩散,有时甚至在初次诊断多年后才会复发 [ 3 , 4 ]。此外,aGCT 患者一生中患其他癌症的风险较高,主要是雌激素敏感性癌症(即乳腺癌和子宫内膜癌)[ 5 , 6 ]。乳腺癌和子宫内膜癌的分子图谱已得到广泛研究,但尚未发现乳腺癌、子宫内膜癌和 aGCT 突变的共同驱动因素 [ 7 ]。据我们所知,只有一份病例报告检查了 aGCT 和并发子宫内膜癌的女性中发现的 DNA 变异 [ 8 ]。 aGCT 的最佳管理面临重大挑战。除肿瘤分期外,没有预后生物标志物可用于预测潜在复发 [9, 10]。除了进一步手术外,复发性 aGCT 缺乏基于证据的治疗选择,且靶向治疗经验有限 [11-16]。最后,关于在确诊 aGCT 后确定女性患其他癌症风险的发表信息很少。自高通量测序(下一代测序,NGS)发展以来,研究已经描述了 aGCT 的突变情况,以确定可操作和预后的变异 [17-21]。据报道,约 95% 的 aGCT 存在 FOXL2 错义突变(c.402C > G;p.C134W)[22-24]。然而,尽管 FOXL2 突变有助于正确诊断 aGCT,但它的临床意义仍然有限[25, 26]。尽管在 aGCT 队列中已报道了截短型 KMT2D 突变、TERT 启动子突变和致病性 TP53 变异,但尚未确定描述预后标志物的模式[17-20, 27-29]。有趣的是,最近的一项研究报告称,aGCT 中具有激素信号传导功能的基因表达增加[30]。由于该肿瘤的罕见性,aGCT 的分子研究自然仅限于少数病例或广泛的横断面研究。这些研究设计无法回答关于基因组图谱与预后或可操作靶点之间的联系的关键问题。据我们所知,aGCT 中现有的分子变异均不能作为个性化治疗的靶点。尽管目前已有多项关于 aGCT 的综述 [ 31 – 38 ],但没有一篇系统地描绘出目前对 aGCT DNA 变异的了解。本范围综述旨在系统地描述 aGCT 中的 DNA 变异,并将这些变异与完善的遗传变异数据库进行参考。通过参考遗传变异数据库的变异,我们可以报告变异对疾病发展的影响以及靶向治疗的潜力。
癌症是全球范围内的头号死因,尽管出现了新的靶向疗法和免疫疗法,但许多晚期或高危癌症患者仍然死于转移性疾病。过继性 T 细胞疗法涉及自体或同种异体移植肿瘤内滤过淋巴细胞或表达新型 T 细胞受体或嵌合抗原受体的基因改造 T 细胞,在癌症患者的治疗中已显示出良好的前景,可产生持久的反应,在某些情况下甚至可治愈。基因组学、计算生物学、免疫学和细胞制造技术的进步使癌症患者个性化治疗的愿望更接近现实。这个基于细胞的个性化治疗的新时代挑战了传统的治疗干预标准,并为癌症治疗方法的范式转变提供了机会。 2020 年研讨会的特邀发言人讨论了三个领域——癌症基因组学、癌症免疫学和细胞疗法制造——这些领域对于 T 细胞疗法在实体恶性肿瘤治疗中的有效转化至关重要。在理解肿瘤内遗传异质性方面取得了重大进展,并且正在开发准确识别新抗原、克服 T 细胞衰竭和避免细胞疗法输注后肿瘤免疫抑制的策略。细胞制造方法正在取得进展,有可能将细胞疗法确立为可靠的治疗选择。T 细胞疗法面临许多挑战,但在改善实体瘤患者的临床结果方面大有希望。
胰腺神经内分泌肿瘤 (PNET) 是第二大最常见的胰腺肿瘤。然而,除了涉及多发性内分泌肿瘤 1 (MEN1)、ATRX 染色质重塑基因和死亡结构域相关蛋白基因的突变(约 40% 的散发性 PNET 中存在这些基因突变)之外,人们对其致瘤驱动因素知之甚少。PNET 的突变负担较低,因此表明其他因素可能促使其发展,包括表观遗传调节因子。DNA 甲基化是一种这样的表观遗传过程,它通过 5'甲基胞嘧啶 (5mC) 沉默基因转录,这通常由基因启动子周围富含 CpG 区域的 DNA 甲基转移酶促进。然而,5'羟甲基胞嘧啶是胞嘧啶去甲基化过程中的第一个表观遗传标记,与 5mC 的功能相反,与基因转录有关,尽管其重要性尚不清楚,因为当仅使用常规亚硫酸氢盐转化技术时,它与 5mC 难以区分。基于阵列的技术的进步促进了 PNET 甲基化组的研究,并使 PNET 能够通过甲基化组特征进行聚类,这有助于预测和发现导致肿瘤发生的新的异常调控基因。本综述将讨论 DNA 甲基化的生物学、其在 PNET 发展中的作用以及对预测和发现表观基因组靶向疗法的影响。
由英国癌症研究和NIHR资助(C8232/A25261)。这项研究已与MRC和Health(英格兰)(英格兰)(授予C1060/A10334和C1060/A16464)的CRUK和EPSRC癌症成像中心获得资金,并向NIHR生物医学研究中心和临床研究机构提供了癌症研究院和癌症研究所的临床研究机构的NHS资金。伯明翰儿童医院感谢NIHR 3T MRI中心的数据收集。A. C. Peet教授感谢NIHR研究教授职位(NIHR-RP-R2-12-019)的支持。S. K. Gill由Action Medical Research和Brain肿瘤慈善机构(GN2181)部分资助。H。E. L. Rose由Little Princess Trust与儿童癌症和白血病小组(CCLG 2019 26)和患有癌症的儿童(15/188)合作。我们还承认,帮助他人帮助他人和儿童研究基金会获得的资金。Martin O. Leach是NIHR名誉高级研究员。D. R. Hargrave博士得到了NIHR Biomedical Research Center在大奥蒙德街儿童医院NHS基金会信托基金会和伦敦大学学院的支持。蒂姆·贾斯坎(Tim Jaspan)和保罗·摩根(Paul S.我们要感谢Karen A. Manias博士在制作图9方面的帮助。