德国劳氏船级社指南允许以两种完全不同的方式计算载荷谱。在所谓的“简化载荷谱”的情况下,载荷分量的最大波动幅度为额定风况下该分量纯气动载荷平均值的±75%,以及与质量相关的载荷的叠加。GL 指南中允许的第二种方法是根据时间域中的模拟结果计算载荷谱。对于多个平均风速,计算载荷分量的时间相关特性时要考虑风的自然空间湍流。使用雨流法将它们转换为载荷谱。在参数研究中,根据这两种方法计算载荷谱并进行比较。计算适用于额定功率为 100 kW 至 2000 kW、具有两个和三个叶片的涡轮机,以及失速控制和俯仰控制涡轮机。通过 1 P 疲劳等效载荷谱将计算出的载荷谱与每个载荷谱进行比较。介绍了各个参数的影响,以及简化载荷谱的有效性。
首先,我要向在大学期间与我共度美好时光的所有同事表示敬意,特别是 Ana Mar´ıa、Alberto 和 Para´ıso。我在马德里的第一天遇到了她,后来又遇到了其他人,但他们在我最后几年的不同阶段都发挥了重要作用。如果没有他们的关注和无条件的支持,这条漫长的道路会更加艰难。我还要感谢 Cristina 的考虑,因为如果没有她的建议,这篇论文的标题会有所不同。显然,我无法忽视我一生中家人给予的鼓励。他们对我决定的支持始终是不可否认的。我所取得的几乎所有成就都归功于您和您的教育,因此这篇论文的很大一部分归功于您。我也感到很幸运和自豪,能够与航空航天飞行器部门的 Crist´obal 和 ´ Alvaro 共事。他们将我和我的同学带入了研究领域,并鼓励我们在工程领域发挥创造潜力。我也非常感谢他们分享了他们的许多知识,涵盖了预测、估计或神经网络等领域。最后但并非最不重要的是,我必须对 GAMESA 公司及其所有员工在该项目开发过程中的接待、帮助和建议表示感谢。特别感谢 Enrique,他的技术援助和支持对于与风力涡轮机行为相关的几个方面至关重要。此外,他还负责本报告的修订,他的意见丰富了这篇论文,使其更加连贯和易于理解。当然,我忘记了很多人,他们值得在这个小页面上占据很大的篇幅。不幸的是,我必须结束这篇文章,因为这份报告必须在几个小时内送到复印店。对于那些出现在这里的人和那些应该出现在这里的人:谢谢。
首先,我要向在大学期间与我共度时光的所有同事表示敬意,特别是 Ana Mar'ıa、Alberto 和 Para'ıso。我在马德里的第一天遇到了她,后来又遇到了其他人,但他们在我最后几年的不同阶段都发挥了重要作用。如果没有他们的关注和无条件的支持,这条漫长的道路会更加艰难。我还要感谢 Cristina 的考虑,因为如果没有她的建议,这篇论文的题目会有所不同。显然,我不能忽视我一生中家人的鼓励。他们对我决定的支持一直是不可否认的。我所取得的成就几乎都归功于你们和你们的教育,因此这篇论文很大一部分是你们的功劳。我也很幸运和自豪能与航空航天飞行器系的 Crist'obal 和 ' Alvaro 一起工作。他们将我和我的同学带入了研究领域,并激发了我们在工程领域的创造潜力。我也非常感谢他们分享了他们在预测、估计或神经网络等领域的大量知识。最后但并非最不重要的是,我必须对 GAMESA 公司及其所有员工表示感谢,感谢他们在该项目开发期间的接待、帮助和建议。特别要感谢 Enrique,他的技术援助和支持对于与风力涡轮机行为相关的几个方面至关重要。此外,他还负责本报告的修订,他的意见丰富了本文并使其更加连贯和易于理解。当然,我忘记了很多值得在这页小纸片上占据大篇幅的人。遗憾的是,我必须结束这篇文章,因为这份报告必须在几个小时内送到复印店。对于那些出现在这里的人和那些应该出现在这里的人:谢谢。
可在安装 GFE/SME 的情况下进行认证,但不能运行(电线束已封盖并存放,已安装“无效”标牌等)。在安装 GFE/SME 且处于非运行状态时,必须满足适用于飞机类型设计的 FAA 14 CFR 要求。FAA 14 CFR 第 21.3 部分 [故障、失灵和缺陷报告] 要求设计批准持有人向 FAA 报告类型认证产品(包括 CDA)的某些故障、失灵和缺陷。证书管理飞机认证办公室 (CMACO) 必须将 FAA 14 CFR 第 21.3 部分以及可能影响 CDA 的报告通知 MCO。如果 MCO 是 CMACO,则设计批准持有人必须直接向 MCO 报告。
在飞机和发动机的各种系统中使用电力技术被认为是改善其基本特性最有前途的方向之一[1]。根据“全电动飞机”的概念,电能将应用于飞机的所有系统,包括燃气涡轮发动机的动力装置,目前仍使用液压和气动装置。“电动”燃气涡轮发动机(EGTE)无需压缩机和附件齿轮箱(AGB)的空气选择即可实现,它们驱动发动机和飞机的装置:泵、发电机、恒速旋转驱动器等。在其系统中,使用电动装置来驱动燃油泵和气路机械化装置。对于发动机转子的减重,有两种选择:使用普通滚动轴承和电动机驱动的润滑系统,以及使用不需要润滑的磁轴承。第二种选择前景更渺茫,因为制造难度较大
kulite.com › asset › media › 2017/05 PDF 2017年5月31日 — 2017年5月31日 飞机发动机传感器商业应用...减轻重量,提高可靠性并满足更高...数字和/或模拟输出。
生活很轻松。在湖边度过无数个日子,然后欢声笑语地吃烧烤,然后伴着窗外夏日的声响安然入睡——也许对我们中的一些人来说是这样。在汤姆·沃尔夫的《太空先锋》中,驻扎在热带地区的一艘航空母舰的船员把甲板称为“煎锅”。我认为这个词可以用来描述夏天许多机场的坡道,烈日炙烤着粘稠的黑色停机坪。在这个最繁忙的季节,许多维修人员可以连续多天加班;或者在半夜不自然的时间长时间工作,在朋友和家人欣赏湖景的同时,顶着窗外刺眼的阳光努力入睡。甚至可以是两者的结合,日夜工作才能完成工作,因为飞机必须飞。这个行业(直升机滑雪除外)的很多方面都存在这样的特点:夏季是全年收入的主要来源,所以不管我们喜不喜欢,我们都必须继续干下去。我们所能做的就是保持警惕,知道什么时候该停下来,以免变得危险,然后——当那个珍贵的休息日终于到来时——充分利用它。去烧烤,游泳,把工作抛在脑后。生活平衡的员工才是更好的员工,所以尽可能享受夏天的剩余时间吧,
R B Joly、S O T Ogaji *、R Singh 和 S.D. Probert 克兰菲尔德大学工程学院,贝德福德郡 MK43 OAL,英国 ______________________________________________________________________ 摘要 英国皇家空军运营的 Tristar 飞机每年在运输和空中加油任务中飞行数千小时。每台劳斯莱斯 RB211-524B4 发动机都记录了大量发动机数据:这些数据用于辅助维护过程。在维修和大修后的试验台发动机地面运行期间也会生成数据。为了更有效地使用记录的发动机数据,本文评估了使用人工神经网络 (ANN) 的主动发动机诊断工具的可行性。介绍了发动机健康监测,并介绍了 ANN 背后的理论。提出了一种使用多个 ANN 的发动机诊断结构。顶层区分单组分故障 (SCF) 和双组分故障 (DCF)。中层类包括有故障的部件或部件对。底层根据使用相关参数的一组发动机数据,为每个发动机部件估计与发动机无关的参数值。本文提出的 DCF 结果说明了 ANN 作为诊断工具的潜力。但是,ANN 应用程序也有许多用户定义的功能:ANN 设计、使用的训练时期数;采用的训练函数、met
能够对系统的结构性能和可靠性进行评估。与叶片振动监测相关的主要技术挑战之一源于复杂的动力学和内在的不确定性,这使得基于模拟的方法难以实现。因此,振动特性的数值研究应基于可靠、有效的气动弹性模型,该模型应能够将结构部分和气动部分耦合。前者通常用等效梁单元建模,而 WT 的典型气动建模方法包括叶片单元动量 (BEM) 理论、执行器线模型、升力面板和涡流模型以及计算流体动力学 (CFD) 方法。执行器线 6 以及升力面板和涡流模型 7 旨在提供改进的尾流建模;然而,两者都各有弱点,前者需要求解 Navier-Stokes 方程,计算量大;后者由于方法的内在奇异性而存在发散问题。8 另一方面,CFD 分析正受到广泛关注,尽管目前已发现其对于大攻角不可靠。9 此外,由于计算需求的增加,它们的适用性仍然受到限制。10 因此,BEM 理论已成为预测 WT 叶片上气动载荷的标准工业实践,这归功于它能够使用翼型气动数据提供准确且计算效率高的结果。除了上述成熟的气动模型外,还提出了各种替代方法。 Zhang 和 Huang 10 对此进行了广泛的综述研究,重点关注了不稳定性问题、复杂流入效应、结构非线性以及 CFD 和气动水弹性分析。仅就气动部分而言,Lee 等人 11 提出了使用改进的条带理论进行气动弹性分析,同时还提出了一种基于谐波平衡法的气动弹性方案,12 大大减少了计算时间,并且证明比标准 BEM 方法更为稳健。13 通过使用三维模型进行数值研究,进一步研究了结冰对叶片气动行为的影响。一类更复杂的方法是基于 CFD 的分析,9,14 事实证明,这种方法与标准工业工具(如疲劳、空气动力学、结构和湍流 (FAST))具有合理的一致性。对于结构模型,除了标准方法(包括等效梁的构造)之外,还提出了其他方法,15包括可以适应大型叶片中遇到的大多数特征的薄壁梁模型 16,例如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损坏的模型,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型之间的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身和风荷载的影响。虽然这些影响对于小型叶片来说可以忽略不计,但对于大型柔性叶片来说并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。24,25 在各种内部代码 26 和气动弹性建模软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于大型风力涡轮机来说越来越重要。然而,与典型的基于位移的 GEBT 公式解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。31 该公式最近才实施和验证 32,随后进一步与 BEM 理论融合,开发了 WT 叶片的非线性气动弹性模型。一类缓解计算成本增加的替代方法是使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。 39 最后,如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损伤的模型,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型不能考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显着的几何非线性。此外,随着当今风力涡轮机尺寸的增大,叶片也变得更加灵活,几何非线性引起的耦合效应也变得越来越重要。24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于较大的风力涡轮机来说越来越重要。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损伤的模型,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型不能考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显着的几何非线性。此外,随着当今风力涡轮机尺寸的增大,叶片也变得更加灵活,几何非线性引起的耦合效应也变得越来越重要。24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于较大的风力涡轮机来说越来越重要。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由于几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由于几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身和风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身和风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,大型柔性叶片则不然,23 这类叶片通常存在显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。24,25 在各种内部代码 26 和气动弹性建模软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于大型风力涡轮机来说越来越重要。然而,解决典型的基于位移的 GEBT 公式的缺点之一是计算成本增加。对此问题的一种补救措施是实施混合形式公式,30 已广泛应用于飞机机翼应用。31 该公式最近才实施并得到验证 32,随后进一步与 BEM 理论融合,开发出一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明可以实现显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,大型柔性叶片则不然,23 这类叶片通常存在显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。24,25 在各种内部代码 26 和气动弹性建模软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于大型风力涡轮机来说越来越重要。然而,解决典型的基于位移的 GEBT 公式的缺点之一是计算成本增加。对此问题的一种补救措施是实施混合形式公式,30 已广泛应用于飞机机翼应用。31 该公式最近才实施并得到验证 32,随后进一步与 BEM 理论融合,开发出一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明可以实现显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,然而,与典型的基于位移的 GEBT 公式解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。31 该公式最近才实施和验证 32,随后进一步与 BEM 理论融合,开发了 WT 叶片的非线性气动弹性模型。一类缓解计算成本增加的替代方法是使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。 39 最后,然而,与典型的基于位移的 GEBT 公式解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。31 该公式最近才实施和验证 32,随后进一步与 BEM 理论融合,开发了 WT 叶片的非线性气动弹性模型。一类缓解计算成本增加的替代方法是使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。 39 最后,
摘要:本论文介绍了风力涡轮机叶片材料(E 玻璃和聚酯树脂)子结构测试的开发,以及从该测试程序中获得的初步实验结果。密歇根州立大学正在进行的研究已经建立了转子叶片材料疲劳响应的基线数据,使用试样几何形状对 10^8 个应力循环进行测试。子结构测试的必要性基于公认的工程程序,即逐步扩大规模以进行全尺寸测试。对于复合材料风力涡轮机叶片,这种方法的必要性源于缺乏针对风力涡轮机预期寿命的动态结构设计经验,在 30 年的使用寿命中接近 10^9 个疲劳循环,并且缺乏在这种循环水平上使用 E 玻璃复合材料的经验。