Flash Battery的2023年营业额达到3400万欧元,急剧增长了54%,进一步巩固了一个职位,该职位已经在欧洲领导人中看到了工业机器和电动汽车的锂电池生产。营业额的显着增长与员工人数激增息息相关:2023年底的员工人数增加到108,增长了36.7%。“在2024年的前两个月”,著名的Marco Righi是2012年Flash Battery的联合创始人,位于Sant'ililio d'enza的公司首席执行官,“员工人数已经增加到115。对我们来说,这是我们在国内和国际市场中最重要的增长指标之一。Flash Battery的2023个营业额在这两个市场中都大大增加。Righi解释说,“在意大利”,“增长为54%,价值为2570万欧元,而在50个以上的国家 /地区,我们出口到我们记录的增长46%,出口价值为860万欧元”。 Flash Battery的首席执行官继续说,“外国流动率的百分比”已从21%上升到25%,在未来几年中,我们将继续在国际扩张中进行大量投资,该国际扩张得到了与德国的动力总成系统积分器的重要合作伙伴关系,英国,西班牙,西班牙和法国的目标是成为欧洲市场上的最高市场的一员。 为了进一步实现这一目标,Flash Battery制定了一项战略计划,该计划在短期内要求投资超过700万欧元。“在意大利”,“增长为54%,价值为2570万欧元,而在50个以上的国家 /地区,我们出口到我们记录的增长46%,出口价值为860万欧元”。Flash Battery的首席执行官继续说,“外国流动率的百分比”已从21%上升到25%,在未来几年中,我们将继续在国际扩张中进行大量投资,该国际扩张得到了与德国的动力总成系统积分器的重要合作伙伴关系,英国,西班牙,西班牙和法国的目标是成为欧洲市场上的最高市场的一员。 为了进一步实现这一目标,Flash Battery制定了一项战略计划,该计划在短期内要求投资超过700万欧元。“外国流动率的百分比”已从21%上升到25%,在未来几年中,我们将继续在国际扩张中进行大量投资,该国际扩张得到了与德国的动力总成系统积分器的重要合作伙伴关系,英国,西班牙,西班牙和法国的目标是成为欧洲市场上的最高市场的一员。为了进一步实现这一目标,Flash Battery制定了一项战略计划,该计划在短期内要求投资超过700万欧元。“自去年以来”,详细阐述了Marco Righi,“我们一直在大大扩展我们的总部,两年半前就开设了启动,存储能力的急剧提高,更重要的是在生产线上,这将使我们在内部管理一系列流程,从一系列的流程中,从我们的friphium of Forthim的组装开始,<<<<<同时,我们将继续投资于研究,开发和创新,这对于我们的产品的可靠性,竞争力和可持续性至关重要”。
人类对自然的经验对我们的文化,经济和健康至关重要。良心驱动的气候变化正在引起生物多样性的广泛转变,而居民城市野生动植物也不例外。我们对超过2,000种动物物种进行了建模,以预测环境变化将如何影响60个加拿大和美国城市内的陆地野生动植物。我们发现了即将发生的大城市变化的证据,其中成千上万的物种将在选定的城市中消失,被新物种取代,或者根本没有取代。效应在很大程度上是特定于物种的,最负面影响的分类单元是两栖动物,犬和懒惰。在温室气体排放的情况下,这些预测的转变是一致的,但是我们的结果表明,变化的严重性将由我们的行动或无所作为来减轻气候变化。即将发生的城市野生动植物的大规模转变将影响人类居民的文化经历,生态系统服务的提供以及我们与自然的关系。
抽象理解基于细菌社区组装的过程是微生物生态学中的关键挑战。我们研究了大规模继承的托管和废弃草地的土壤细菌群落,并与成熟的森林遗址配对,以解开社区营业额和集会的驱动因素。多样性分配和植物 - 网络零模型表明,在放弃和继承继承后,草原的细菌群落在构图上保持稳定,但它们与充分森林的地点有明显差异。Zeta多样性分析表明,核心微生物分类单元的持久性反映了和与全尺度社区离职模式不同。土壤pH和c:n的差异是成对的草原和森林部位之间社区周转的主要驱动因素,而在演替阶段,pH的变异性是与确定性组装过程的相对优势相关的关键因素。我们的结果表明,草原微生物可能在组合上有弹性,对遗弃和继任继承,并且在树木和森林之间的微生物群落的主要变化是在树木成为主要植被时的一生中相当后期发生的。我们还表明,核心分类单元可能显示出对草原管理和遗弃的反应。
抽象背景:在几种真核生物中,DNA甲基化发生在许多基因的编码区域内,称为基因体甲基化(GBM)。虽然DNA甲基化对转座子沉默和重复DNA的作用良好,但基因体甲基化与转录抑制无关,并且其生物学重要性尚不清楚。结果:我们报告了一种新发现的植物中的GBM类型,该类型是在所有细胞中的动态甲基化修饰剂(包括种系)中的建立添加和通过动态甲基化修饰剂的去除。Div>在动态GBM基因处的甲基化通过DRDD去甲基化途径去除,并通过未知的从头甲基化来源添加,很可能是维持甲基转移酶Met1。我们表明,动态GBM状态存在于超过1亿年的不同谱系的同源基因上,表明进化保存。我们证明,与其他基因体甲基化基因相比,动态GBM与基因体内的启动子或调节染色质状态的存在密切相关。我们发现动态GBM与跨发育和不同生理条件的增强基因表达可塑性有关,而稳定的甲基化GBM基因表现出降低的可塑性。动态GBM基因在DRDD突变体中表现出降低的动态范围,表明DNA去甲基化与增强基因表达塑性之间存在因果关系。结论:我们在调节基因表达可塑性方面提出了一个新的GBM模型,其中包括一种新型的GBM类型,其中增加的基因表达可塑性与DNA甲基化作者和橡皮擦的活性以及调节性染色质状态的富集有关。
Tony Heitkam Daniela Holtgräwe CeBiTec 生物学院和德累斯顿工业大学生物学院 比勒费尔德大学 01069 Dresden 33615 Bielefeld 德国 德国 电话:(+49) 351 463 39593 (+49) 521 106 8724 电子邮箱:tony.heitkam@tu-dresden.de dholtgra@cebitec.uni-bielefeld.de 连载标题:甜菜中的重复
托尼·汉斯卡姆(Tony Hanskam)生物学生物学学院cebite cebite cobite cobite cobites filogic dictarter diss 3915 8710 8724:tony.hetkam@tu-dresen.de dhtgra@cebitebec.unicbaxeld.unic-baxeld.unic-baxeld.de跑步标题
先天或获得对小分子BRAF或MEK1/2抑制剂(BRAFI或MEKI)的抗性通常是通过维持或恢复ERK1/2激活的机制而产生的。这导致了抑制激酶催化活性(CATERKI)的一系列ERK1/2抑制剂(ERKI)的发展,或者还防止了MEK1/2通过MEK1/2激活ERK1/2的激活的PT-E-PY双磷酸化(双向力学或DMENISP或DMERKI)。在这里,我们表明八个不同的Erki(Caterki或dmerki)驱动ERK2的营业额为ERK2,这是最充实的ERK同工型,对ERK1的影响很小或没有影响。热稳定性测定表明,ERKI在体外不会破坏ERK2(或ERK1)的稳定,这表明ERK2离职是ERKI结合的一种细胞后果。ERK2周转率,这表明ERKI与ERK2的结合驱动ERK2转移。然而,MEKI预处理阻止ERK2 PT-E-PY磷酸化和与MEK1/2的解离,可防止ERK2的离职。ERKI的细胞处理驱动ERK2的多泛素化和蛋白酶体依赖性转移以及Cullin-Ring E3连接酶的药理学或遗传抑制可防止这一点。我们的结果表明,包括当前的临床候选者在内的ERKI充当“激酶降解器”,推动其主要靶标ERK2的蛋白酶体依赖性转移。这可能与ERK1/2的激酶非依赖性作用和ERKI的治疗使用有关。
已知低分子量 (LMM) 硫醇化合物对各种生物体的许多生物过程都很重要,但 LMM 硫醇在厌氧菌中的研究不足。在这项工作中,我们研究了模型铁还原细菌 Geobacter sulphurreducens 对具有与半胱氨酸相关化学结构的纳摩尔浓度 LMM 硫醇的产生和周转。我们的结果表明,G. sulphurreducens 根据细胞生长状态和外部条件严格控制硫醇的产生、排泄和细胞内浓度。内源性半胱氨酸的产生和细胞输出与 Fe(II) 的细胞外供应相结合,这表明半胱氨酸排泄可能在细胞向铁蛋白的运输中发挥作用。添加过量的外源性半胱氨酸导致细胞将半胱氨酸快速大量地转化为青霉胺。添加同位素标记的半胱氨酸的实验证实,青霉胺是由半胱氨酸 C-3 原子二甲基化形成的,而不是通过对半胱氨酸暴露的间接代谢反应形成的。这是首次报道该化合物的从头代谢合成。青霉胺的形成随着外部暴露于半胱氨酸而增加,但该化合物并未在细胞内积累,这可能表明它是 G. 硫还原菌维持半胱氨酸稳态的代谢策略的一部分。我们的研究结果强调并扩展了严格厌氧菌中介导半胱氨酸样 LMM 硫醇稳态的过程。青霉胺的形成尤其值得注意,这种化合物值得在微生物代谢研究中引起更多关注。
正常的人类细胞可以合成胆固醇或从脂蛋白中取出以满足其代谢需求。在某些恶性细胞中,从头胆固醇的合成基因是转录静音或突变的,这意味着生存需要脂蛋白的细胞摄取。最近的数据表明,依赖于脂蛋白介导的胆固醇摄取的淋巴瘤细胞也会受到氧化和铁依赖性细胞死亡机制的影响,这是由细胞膜中氧化脂质积聚而触发的,除非脂质氢氧化酶4(glutathione periquidase 4(GPEXID)的氧化脂质酶4(GPSID)对氧化脂蛋白溶液酶4(GPXID酶4(GPXID)。研究将胆固醇摄取的机制与铁凋亡联系起来,并确定高密度脂蛋白(HDL)受体作为胆固醇消耗疗法的靶标的潜在作用,我们治疗了淋巴瘤细胞系已知对减少HDL型Nananoparke(Hdplike nanopark)(Hdplike nanapters)(Hdpp)(Hdplike nanopart)(Hdpp)(Hdplike)敏感。HDL NP是一种胆固醇贫乏的配体,与富含胆固醇的HDL,可寻求的B1型HDL结合(Scarb1)。我们的数据表明,HDL NP治疗激活了治疗细胞中的分解代谢反应,降低了从头胆固醇的合成,伴随着GPX4表达的几乎完全降低。结果,氧化的膜脂质积聚,通过与铁吞作用一致的机制导致细胞死亡。全身在小鼠淋巴瘤异种移植物和从淋巴瘤患者获得的主要样品中,全身给药后,我们在体内获得了相似的结果。总而言之,用胆固醇吸收中的HDL NP靶向SCARB1 - 上瘾的淋巴瘤细胞消除了GPX4,导致癌细胞死亡与与铁毒性相一致的机制。