摘要:扭曲的石墨烯单和双层系统的超晶格产生了按需多体状态,例如Mott绝缘子和非常规的超导体。这些现象归因于平坦带和强库仑相互作用的组合。然而,缺乏全面的理解,因为当电场应用以改变电子填充时,低能带的结构会发生强烈的变化。在这里,我们通过应用微型注重角度分辨的光发射光谱光谱光谱光谱光谱传递到位于原位门配,我们可以直接访问扭曲的双层石墨烯(TBG)和扭曲的双重双层石墨烯(TDBG)的填充相关的低能带。我们对这两个系统的发现处于鲜明的对比:可以在简单模型中描述掺杂的TBG的掺杂依赖性分散体,将依赖于填充的刚性带转移与多体相关的带宽变化相结合。在TDBG中,我们发现了低能带的复杂行为,结合了非单调带宽变化和可调间隙开口,这取决于栅极诱导的位移场。我们的工作确立了在扭曲的石墨烯超晶格中低能电子状态的电场可调节性的程度,并且可以支持对所得现象的理论理解。关键字:扭曲的双层石墨烯,Moire ́超级晶格,扁平带,微摩尔,原位门控,带宽重归于
##电子邮件:sh315@cam.ac.uk,jaa59@cam.ac.uk抽象扭曲的双层石墨烯提供了一个理想的固态模型,可探索相关的材料属性和机会,用于各种光电应用程序,但可靠,可靠的快速,快速的扭曲角度表征仍然是一个挑战。在这里,我们引入光谱椭圆测量对比度显微镜(SECM),作为在光学共振的扭曲双层石墨烯中绘制扭曲角度障碍的工具。我们优化了椭圆角,以根据入射光的测量和计算的反射系数增强图像对比度。与Van Hove奇异性相关的光谐振与拉曼和角度分辨光电发射光谱良好相关,证实了SECM的准确性。结果强调了SECM的优势,这被证明是在大面积上表征扭曲的双层石墨烯,解锁过程,材料和设备筛选以及双层和多层材料的交叉相关测量潜力的快速,无破坏性方法。
马约拉纳零模式 (MZM) 是拓扑保护量子计算硬件的有希望的候选者,然而它们的大规模使用可能需要量子纠错。马约拉纳表面码 (MSC) 已被提议实现这一目标。然而,许多 MSC 属性仍未得到探索。我们提出了一个统一的 MSC“扭曲缺陷”框架——编码量子信息的任意子类对象。我们表明,MSC 中的扭曲缺陷可以编码两倍于基于量子位的代码或其他 MSC 编码方案的拓扑保护信息量。这是因为扭曲同时编码了逻辑量子位和“逻辑 MZM”,后者增强了微观 MZM 可以提供的保护。我们解释了如何使用逻辑量子位和逻辑 MZM 执行通用计算,同时可能使用比其他 MSC 方案少得多的资源。所有 Clifford 门都可以通过编织扭曲缺陷在逻辑量子位上实现。我们介绍了基于格子手术的逻辑 MZM 和逻辑量子位计算技术,实现了 Clifford 门的效果,且时间开销为零。我们还表明,逻辑 MZM 可能会在足够低的准粒子中毒率下改善空间开销。最后,我们介绍了一种新颖的 MSC 横向门模拟,通过编织微观 MZM 实现小代码中的编码 Clifford 门。因此,MSC 扭曲缺陷为容错量子计算开辟了新途径。
要计算WSE 2层的Moir´e电子结构,我们需要求解未介绍的TMD的K和-K谷(τ= 1和-1)周围的有效连续模型,然后将它们折叠到Moir'e Bz中s3(a),其中蓝色区域代表具有τ= 1的连续模型,红色区域代表带有τ= - 1的连续模型。这两个区域在动量空间中远距离分离,因此两个连续模型在单粒子水平上被解耦]。我们将Bz中的山谷表示为±K,而Moir´e Bz中的山谷为κ和κ'。为简单起见,我们还使用±k表示某处τ=±1的连续模型。为了获得Moir´e潜在参数(v I,φi),(i = V,c),我们使用自旋轨道耦合(SOC)来利用密度功能理论(DFT)软件VASP [6-8]来计算WSE 2 / WSE 2 / WS 2 HETEROBILAYER系统。Moir´e的电势作用在相应的价和配置带的D轨道上,可以解释为Valence带最大值(VBM)的变化,而传导带最小值(CBM)是Moir´e超级突出的位置R的函数。如上所述,可以将这些变化映射到VBM和CBM的变化,并在AA堆叠的WSE 2 / WS 2 BILAYER中具有不同的层间层中位移D,其扭曲角度为零。在此,我们计算了三个高对称堆叠配置的带状结构[5]。基于金属原子和相反层的金属原子和chalcogen原子的比对,将三种构造称为SE / W,AA和W / S。例如,SE / W表示顶层中的SE原子与底层中的W原子对齐。真空距离在平板模型中设置为20°A,并且在不同结构构造中的层间距离是通过
Twist Bioscience 文库制备和靶向富集检测是一种高度模块化的靶向富集下一代测序 (NGS) 试剂盒,具有从固定面板到全外显子组测序的各种应用。该试剂盒利用基因组 DNA (gDNA) 的片段化、连接和扩增来制备 NGS 文库,并利用基于珠子的杂交文库捕获来富集文库。Twist Bioscience 为用户提供了高度的灵活性,以满足实验室的需求,包括酶促或机械片段化、使用 Twist 全长组合双 (CD) 索引适配器或通用双索引 (UDI) 引物的两组不同的索引化学反应、单重或多重富集选项、用于文库富集的市售固定面板和定制面板选项,以及“标准”16 小时杂交选项或可运行 15 分钟至 4 小时的“快速”杂交选项。整个手动文库制备和靶向富集方案可以在最短一天或最多三天内完成。
金属单核化杂质中的厚度和扭曲角度依赖性层间激素wenkaiZheng§,⊥,⊥,lixiang§,⊥,⊥,felipe dequesada˧,£,£,Mathias Augustinǂ,Mathias Augustinǂ,ƪ,金属单核化杂质中的厚度和扭曲角度依赖性层间激素wenkaiZheng§,⊥,⊥,lixiang§,⊥,⊥,felipe dequesada˧,£,£,Mathias Augustinǂ,Mathias Augustinǂ,ƪ,
©2024 Thermo Fisher Scientific Inc. 保留所有权利。除非另有说明,所有商标均为 Thermo Fisher Scientific 及其子公司的财产。TaqMan 是 Roche Molecular Systems, Inc. 的商标,经许可和授权使用。IDT 和 gBlocks 是 Integrated DNA Technologies, Inc. 的商标。Twist Bioscience 是 Twist Bioscience Corporation 的商标。ZeptoMetrix 是 ZeptoMetrix Corporation 的商标。
本演示文稿包含前瞻性语句。除本文所包含的历史事实陈述以外的所有陈述都是前瞻性陈述,反映了根据1995年《私人证券诉讼改革法案》的安全港规定所提出的当前对管理的信念和期望,其中包括,包括有关预期数据存储需求增长的陈述; Twist Bioscience的第一个DNA数据存储解决方案的早期访问推出的时机;以及Twist Bioscience的DNA数据存储解决方案的能力,使其能够具有成本效益,可扩展和可持续的存档存储。前瞻性陈述涉及已知和未知的风险,不确定性以及可能导致生物科学的实际结果,绩效或成就的其他重要因素,与前瞻性陈述所表达或暗示的任何未来结果,绩效或成就有实质性不同。以描述可能导致实际结果与这些前瞻性陈述中表达的结果不同的风险和不确定性,以及与Twist Bioscience的一般业务有关的风险,请参见Twist Bioscience在Twist Bioscience在表格10-Q上向表格10-Q提交的季度报告中提交的证券和交易所委员会的季度报告,并在2022年2月7日向2023年2月2日和该份额提供。本演示文稿中包含的任何前瞻性陈述仅在此日期开始说明,并且Twist Bioscience明确违反了任何更新任何前瞻性陈述的义务,无论是由于新信息,未来事件还是其他方式。这种风险和不确定性包括与Covid-19有关的风险和不确定性;吸引新客户,保留和发展现有客户的销售的能力;迅速变化的技术和合成生物学的广泛竞争的风险和不确定性可能会使产品扭曲生物科学发展过时或不竞争;保留重要客户的不确定性; Twist Bioscience成功整合了包括Abveris在内的获得的公司的能力,并从收购中获得预期收益;供应链和其他由COVID-19造成的大流行或其他造成的破坏;第三方索赔的风险指控侵犯专利和专有权利或试图使扭曲生物科学的专利或专有权利无效;扭曲生物科学专有权利的风险可能不足以保护其技术。
情节扭曲:当RNA证据挑战我们对DNA结果的期望时,Alexandra Richardson,MS; Terra Brannan,博士; Colin Young博士; Marcy Richardson博士; Carrie Horton,MS-CGC; Heather Zimmermann,博士背景:配对的DNA和RNA测试(DGT-RGT)通过检测位于标准的下一代序列(NGS)捕获以外的剪接变体和提供变体分类中的证据范围来提高DNA结果的准确性。DGT-RGT的另一个好处是识别导致意外或非常规剪接事件的变体。在这里,我们提出了一个变异级别的病例系列,该病例序列突出了通过DGT-RGT在一个临床诊断实验室中鉴定出的意外RNA发现。变体呈现:变体1-NF1 C.888+2T> C会影响剪接供体部位内的规范位置,从而根据当前ACMG指南将其分类为病原(LP)。最近的研究表明,+2位置的T> c取代能够在某些基因组环境中产生野生型转录本。DGT-RGT并未确定与该变体相关的明显异常剪接,这与载体中缺乏神经纤维瘤病一致。变体2- BRIP1 c.727a> g(p.i243v)是中期错义变化,在硅剪接站点中,该算法预测了创建强大的de从头供体站点。RNA研究证实了这种新型供体部位的使用,但出乎意料地表明,外显子内的现有隐性受体位点同时被激活,从而有效地在外显子内产生了伪内龙。在计算机剪接算法中预测了新型U2受体位点的创建。变体3&4 NF1 C.5750-184_5750-178 duptttcttc和atm c.3480g> t(p.v1160v)分别是内含子和同义中的中性和同义性中性变化。RNA测试确定了使用远处的隐性受体部位引起的异常转录本。这两个变体都会增加神秘受体上游隐秘的多吡啶氨酸段中的嘧啶含量。多嘧啶界是受体剪接位点识别中的重要组成部分,但据我们所知,尚未据报道隐性多吡啶氨酸裂纹激活作为异常剪接的机制。变体5&6 -BRCA2 [C.6816_6841+1534DEL1560; c.6762delt]和APC c.1042c> t(p.R3248*)预计由于过早终止密码子(PTC)而导致无义介导的衰减(NMD),因此根据ACMG指南将其归类为致病性。然而,RNA测试表明,这些变体引起了框架内的剪接事件,从而去除了PTC,这一发现与载体中相关的基因 - 疾病表型不存在一致。变体7- lztr1 c.2232g> a(p.a744a)是一种高频同义词,位于内含子的下游,它通过毫无常见的U12剪接体剪接。RNA测试表明,新型U2受体位点经常与现有的上游,隐秘的U2供体站点一起使用,但仅在某些个体中。其他具有低级异常剪接的概率对于弱化隐秘的U2供体部位的常见多态性是纯合的。结论:据我们所知,这是影响内含子的U2/U12-身份的单个核苷酸变化的第一个例子,它也例证了转录组中的个体变异性。
本文考虑了一种混合多层随机块模型 (MMLSBM),其中各层可以划分为相似网络组,每组中的网络都配备不同的随机块模型。目标是将多层网络划分为相似层的集群,并识别这些层中的社区。Jing 等人 (2020) 介绍了 MMLSBM,并开发了一种基于正则化张量分解的聚类方法 TWIST。本文提出了一种不同的技术,即交替最小化算法 (ALMA),旨在同时恢复层分区,以及估计不同层的连接概率矩阵。与 TWIST 相比,ALMA 在理论和数值上都实现了更高的精度。