Peter Palm 讲师 马尔默大学 城市研究 马尔默大学 205 06 马尔默 瑞典 Peter.palm@mah.se +46(0)40-665 77 11 房地产管理策略:两条战略路径 摘要 目的——本文旨在确定构建房地产管理组织的不同战略路径。研究并概述了商业房地产组织的不同战略路径及其商业模式与环境的一致性。 设计/方法/方法——本研究基于对瑞典商业房地产行业 15 位高层管理人员的访谈分析。 发现——在为公司制定战略计划时,商业房地产行业在房地产管理方面有两条战略路径需要考虑。第一是选择是否拥有自己的一线人员或外包这一职能。第二是决定如何处理租赁任务:应该将其视为房地产经理的任务还是应该作为组织中的一项职能?本研究的结论是,所研究的组织可以使用这两种途径进行构建,而公司仍然可以取得成功。此外,无论组织如何构建,高层管理人员的论点都是相同的。他们都以这样的观点为基础制定战略计划:他们的组织结构是照顾客户的最佳方式。换句话说,他们有相同的论点,但选择了不同的战略途径来实现战略契合。 研究局限性/含义——本文的研究仅限于瑞典商业房地产行业。 原创性/价值——本文从高层管理的角度概述了房地产管理的战略途径。 关键词——战略规划、房地产管理、战略契合、组织结构 论文类型 研究论文 1. 简介 为了在竞争激烈的市场中生存和取得成功,公司需要发展并保持与环境的一致性。战略文献强调旨在使公司与环境契合以获得和留住新客户的战略。在商业房地产(其中物业作为投资资产持有并由其自己的物业管理公司进行管理)的背景下,市场竞争变得更加激烈(Lind 和 Lundström,2011 年)。这种竞争迫使房地产行业发展出一种更加面向服务的方法(Palm,2011 年)。在商业房地产战略领域,该行业必须使其商业模式与环境保持一致,以满足客户的需求并提供必要的服务。
范围:下一代互联网 (NGI) 是美国和英国等国家关注的焦点,旨在改进和革新当前和未来的互联网及其后端网络和基础设施,以开发更快、更可靠、更安全的互联网平台。NGI 的目标是开发互联网的高级版本。NGI 的目标交付成果包括构建具有更高数据访问、人机通信和生产力水平的网络通信架构,并实现更快的互联网带宽和速度。互联网从低级关注向更高级别的关注发展,重点关注互联互通、增加用户交互、视频聊天以及虚拟世界中的金融和社交互动,这是 NGI 发展的主要目标。虚拟世界不由单个实体或元宇宙拥有或控制,因为计算机生成的虚拟环境是为了可靠的用户交互而创建的。Web 3.0 是一项进步,它将控制未来的互联网和元宇宙中心,以提供更好的用户体验。在元宇宙中,使用来自不同供应商的软件进行交互的用户将体验到每个供应商的货币化,尽管技术不同,但交互无缝。
用于磁共振成像 (MRI) 的单图像超分辨率 (SISR) 重建引起了人们的极大兴趣,因为它不仅可以加快成像速度,还可以改善可用图像数据的定量处理和分析。生成对抗网络 (GAN) 已被证明在图像恢复任务中表现良好。在这项工作中,我们遵循 GAN 框架并开发了一个与鉴别器相结合的生成器来解决 T1 脑 MRI 图像上的 3D SISR 任务。我们开发了一种新颖的 3D 内存高效的残差密集块生成器 (MRDG),其在 SSIM(结构相似性)、PSNR(峰值信噪比)和 NRMSE(归一化均方根误差)指标方面实现了最先进的性能。我们还设计了一个金字塔池化鉴别器 (PPD) 来同时恢复不同尺寸尺度上的细节。最后,我们引入了模型混合,这是一种简单且计算效率高的方法,可以平衡图像和纹理
摘要 我们为张量网络状态的参数族设计量子压缩算法。我们首先建立存储给定状态族中的任意状态所需的内存量的上限。该上限由合适流网络的最小割确定,并与从指定状态的参数流形到状态所体现的物理系统的信息流有关。对于给定的网络拓扑和给定的边维度,当所有边维度都是同一整数的幂时,我们的上限是严格的。当不满足此条件时,该上限在乘法因子小于 1.585 时是最佳的。然后,我们为一般状态族提供了一种压缩算法,并表明该算法对于矩阵乘积状态在多项式时间内运行。
活神经网络通过生长和自组织过程出现,从单个细胞开始,最终形成大脑,一个有组织、有功能的计算设备。然而,人工神经网络依靠人类设计的手工编程架构来实现其卓越的性能。我们能否开发出无需人工干预就能生长和自组织的人工计算设备?在本文中,我们提出了一种受生物启发的开发算法,该算法可以从单个初始细胞“生长”出一个功能齐全的分层神经网络。该算法组织层间连接以构建视网膜主题池化层。我们的方法受到早期视觉系统所采用的机制的启发,在动物睁开眼睛前几天,该系统将视网膜连接到外侧膝状体 (LGN)。稳健自组织的关键因素是第一层中出现的自发时空活动波和第二层中“学习”第一层中底层活动模式的局部学习规则。该算法可适应各种输入层几何形状,对第一层中的故障单元具有鲁棒性,因此可用于成功增长和自组织不同池大小和形状的池架构。该算法提供了一种通过增长和自组织构建分层神经网络的原始程序。我们还证明了从单个单元增长的网络在 MNIST 上的表现与手工制作的网络一样好。从广义上讲,我们的工作表明,受生物启发的开发算法可以应用于在计算机中自主生长功能性“大脑”。
摘要:至关重要的是要问,代理如何仅使用通过习惯性感觉运动经验获得的部分世界模型来生成行动计划,从而实现目标。尽管许多现有的机器人研究都使用了前向模型框架,但存在高自由度的泛化问题。当前的研究表明,采用生成模型的预测编码 (PC) 和主动推理 (AIF) 框架可以通过学习低维潜在状态空间中的先验分布来开发更好的泛化,该先验分布表示从习惯性感觉运动轨迹中提取的概率结构。在我们提出的模型中,学习是通过推断最佳潜在变量以及突触权重来最大化证据下限来进行的,而目标导向规划是通过推断潜在变量来最大化估计下限来完成的。我们提出的模型在模拟中使用简单和复杂的机器人任务进行了评估,通过为正则化系数设置中间值,证明了在有限的训练数据下学习中具有足够的泛化能力。此外,比较模拟结果表明,由于先验学习将运动计划的搜索限制在习惯轨迹范围内,因此所提出的模型在目标导向规划中优于传统的前向模型。
我们开发了一个用于构建可变形模板的学习框架,该模板在许多图像分析和计算解剖学任务中起着基础性作用。用于模板创建和图像与模板对齐的传统方法经历了数十年的丰富技术发展。在这些框架中,模板是使用模板估计和对齐的迭代过程构建的,这通常在计算上非常昂贵。部分由于这一缺点,大多数方法为整个图像群体计算单个模板,或为数据的特定子组计算几个模板。在这项工作中,我们提出了一个概率模型和有效的学习策略,该模型和有效的学习策略可以产生通用或条件模板,并与一个神经网络联合使用,该神经网络可以有效地将图像与这些模板对齐。我们展示了该方法在各种领域的实用性,特别关注神经成像。这对于不存在预先存在的模板的临床应用特别有用,或者使用传统方法创建新模板的成本可能过高。我们的代码和地图集可作为 VoxelMorph 库的一部分在线获取,网址为 http://voxelmorph.csail.mit.edu 。
微分同胚可变形图像配准在许多医学图像研究中至关重要,因为它提供了独特的属性,包括拓扑保存和变换的可逆性。最近基于深度学习的可变形图像配准方法利用卷积神经网络(CNN)从合成基本事实或相似性度量中学习空间变换,从而实现快速图像配准。然而,这些方法往往忽略了变换的拓扑保存和变换的平滑性,而平滑性仅由全局平滑能量函数来强制执行。此外,基于深度学习的方法通常直接估计位移场,这不能保证逆变换的存在。在本文中,我们提出了一种新颖的、有效的无监督对称图像配准方法,该方法最大化微分同胚图空间内图像之间的相似性,并同时估计正向和逆变换。我们使用大规模脑图像数据集在 3D 图像配准上评估了我们的方法。我们的方法实现了最先进的配准精度和运行时间,同时保持了理想的微分同胚特性。
在这项工作中,我们提出了一种用于人形 iCub 机器人头部姿势估计和场景表示的神经形态架构。脉冲神经网络在英特尔的神经形态研究芯片 Loihi 中完全实现,并精确整合发出的运动命令,以在神经路径整合过程中估计 iCub 的头部姿势。iCub 的神经形态视觉系统用于校正姿势估计中的漂移。机器人前方物体的位置使用片上突触可塑性来记忆。我们使用机器人头部的 2 个自由度 (DoF) 进行实时机器人实验,并展示精确的路径整合、视觉重置和片上物体位置学习。我们讨论了将机器人系统和神经形态硬件与当前技术集成的要求。
1 印第安纳医学院儿科、解剖学、医学和分子遗传学系 Herman B Wells 儿科研究中心,美国印第安纳州印第安纳波利斯 46202 2 印第安纳大学基因组学和生物信息学中心,美国布卢明顿 3 劳伦斯伯克利国家实验室环境基因组学和系统生物学部,美国加利福尼亚州伯克利 94720 4 加利福尼亚大学比较生物化学项目,美国加利福尼亚州伯克利 94720。 5 美国能源部联合基因组研究所,劳伦斯伯克利国家实验室,美国加利福尼亚州伯克利 94720 6 伯尔尼大学生物医学研究系 (DBMR),瑞士伯尔尼 7 伯尔尼大学医院心脏病学系,瑞士伯尔尼
