随着人们越来越关注政府和金融系统、医疗保健系统和军事通信等关键基础设施的安全通信,QKD 安全光网络的潜在社会影响也十分巨大。QKD 可以保护敏感的个人信息(例如医疗记录和财务信息)免受各种量子攻击和未经授权的访问。此前,印度空间研究组织 (ISRO) 成功演示了两个地面站之间的 QKD 链路,这是朝着开发安全的卫星通信系统迈出的重要一步。2020 年,印度政府宣布成立国家量子技术和应用任务 (NM-QTA),这是一项多机构倡议,旨在促进印度量子技术的开发和部署。NM-QTA 的重点是量子通信,其中可能包括 QKD。在启动 iCET 之后,印度内阁已批准约 6000 亿卢比用于国家量子任务,以加快该国在八年内量子技术的发展。虽然世界上第一个建立的量子网络是由美国国防高级研究计划局 (DARPA) 通过光纤在哈佛大学、波士顿大学和 BBN Technologies 之间建立的量子网络,但目前美国正在开展多个 QKD 计划和研究项目,这些计划和研究项目由美国能源部 (DOE)、美国国家科学基金会 (NSF) 等政府机构资助。
单元 -I 无线通信系统简介:移动无线电通信的发展,无线通信系统的示例 - 寻呼系统、无绳电话系统、蜂窝电话系统、常见无线通信系统的比较、蜂窝无线电和个人通信的趋势。现代无线通信系统:第二代 (2G) 蜂窝网络、第三代 (3G) 无线网络、无线本地环路 (WLL) 和 LMDS、无线局域网 (WLAN)、蓝牙和个人局域网 (PAN)。第二单元:移动无线电传播:大规模路径损耗:无线电波传播简介、自由空间传播模型、功率与电场的关系、三种基本传播机制、反射-电介质反射、布儒斯特角、完美导体反射、地面反射(双射线)模型、衍射-菲涅尔区几何、刀刃衍射模型、多重刀刃衍射、散射、室外传播模型-Longley Ryce 模型、Okumura 模型、Hata 模型、Hata 模型的 PCS 扩展、Walfisch 和 Bertoni 模型、宽带 PCS 微蜂窝模型、室内传播模型-分区损耗(同一楼层)、楼层间分区损耗、对数距离路径损耗模型、爱立信多断点模型、衰减因子模型、信号穿透建筑物、射线追踪和特定站点建模。第三单元:移动无线电传播:小规模衰落和多径小规模多径传播 - 影响小规模衰落的因素、多普勒频移、多径信道的脉冲响应模型 - 带宽与接收功率之间的关系、小规模多径测量 - 直接射频脉冲系统、扩频滑动相关器信道探测、频域信道探测、移动多径参数
社会住房战略论坛 参加这次会议非常重要。你知道,我们经常参加一些非常集中的会议,这些会议纯粹围绕我们的团队经理展开,或者只是讨论一些狭隘的主题。我们发现,这次会议的战略讨论范围要广得多,而且有很多人我们平时在会议上不会遇到。就我个人而言,这次会议的真正优势在于它有真正的目的,我不得不说这是我参加过的最好的会议之一。我们与人们举行了各种不同的商务会议,讨论某些主题。在快速交流中,我们有机会快速地与许多代表交谈,讨论我们作为一个组织可以做什么,同时也快速地谈论他们真正想要我们做什么。这个应用程序非常易于使用,所以你可以在一天开始时非常快速轻松地登录,这真的很好,我认为对我来说,最大的好处是人们可以在活动期间要求你开会。
需要开发适应不断变化的生产情景的植物品种,特别是在气候变化的情况下,这要求作物满足日益复杂和多样化的需求,这对育种者来说是一个巨大的挑战。在此背景下,追求赋予所需作物特性和适应性的性状组合比以往任何时候都更加重要,因此有必要加强多标准或多性状育种(Moeinizade 等人,2020 年)。利用分布在基因组中的完整核苷酸多样性来预测数量性状的育种值(基因组预测,GP,Meuwissen 等人,2001 年)已证明其在育种计划中的有效性。事实证明,这种方法有助于提高遗传增益率并降低成本(Hickey 等人,2017 年)。然而,为了应对气候变化和更明确的环境目标种群(Chapman 等人,2000 年),对多环境(ME)育种的需求日益增长,这需要采用基因组预测方法来解释基因型和环境(GxE)之间相互作用的出现(Rincent 等人,2017 年)。先前的研究试图在基因组选择(GS)中解决 GxE。例如,Burgueño 等人(2012) 开发了多环境统计模型。然而,这些模型仅考虑线性和非因果环境效应,从而降低了预测准确性的可能增益,尤其是对于复杂的综合性状或与校准集有显着差异的环境(Rogers and Holland,2022)。Heslot 等人。另一方面,(2014 年)使用作物生长模型 (CGM) 来推导环境协变量。与标准 GS 模型相比,在 GS 框架内加入环境协变量可提高预测准确性并降低未观察环境中的预测变异性。整合作物模型以解决 GxE,如 Heslot 等人的研究所示。(2014) ,强调了这种方法在所述育种环境中的实用性。尽管如此,考虑大量协变量会显著增加问题的复杂性,使得建模变得极具挑战性(Larkin 等人,2019 年)。
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
AIM-7 麻雀 AIM-7 麻雀是一种雷达制导空对空导弹,具有高爆炸弹头。多功能麻雀导弹具有全天候、全高度作战能力,可以从任何方向攻击高性能飞机和导弹。AIM/RIM-7 系列是一种半主动、空对空、助推滑翔导弹,设计为轨道发射或弹射发射。半主动、连续波、自导雷达和液压控制面引导和稳定导弹,使其按比例导航至目标。导弹的推进力由固体推进剂火箭发动机提供。它是美国和北大西洋公约组织 (NATO) 部队广泛使用的导弹。在海湾战争中,雷达制导的 AIM-7 麻雀导弹被证明是一种强大的空对空武器,由空军战斗机使用飞行员。 22 架伊拉克固定翼飞机和 3 架伊拉克直升机被雷达制导的 AIM-7 麻雀导弹击落。麻雀导弹的局限性在于,发射它的飞机必须持续用雷达跟踪目标,这限制了飞机的飞行速度。 /div>
● 也称为“传递函数” - 计算加权和,并决定是否“激发”神经元。 ● 最常见的例子 - 阶跃函数。 ● 非线性激活函数有助于解决复杂问题
