本文描述的创新生物技术旨在引起与供应相关的高风险的关键金属。描述了涉及从采矿大坝中恢复各种资源和良好实践例子的技术流,旨在提高循环经济环境中关键金属恢复的知识基础。传统上,原材料的开发集中在高级矿床中,并通过常规技术提取和处理。它们的金属回收效率随时间变化,并通过最小有效的尺度方法构建。因此,尾坝含有大量经济有价值的金属和创新技术,以恢复废弃的关键金属关键词:关键金属,创新技术,循环经济,矿山尾矿简介
博士奖学金:通过使用人工智能 (ASMAI) 增强可持续性指标描述:可持续性由三个关键部分组成 - 环境、经济和社会方面 - 必须对所有这些部分进行评估和平衡,以改进现有或开发新的可持续产品、服务和/或系统。这些标准的投入、产出和影响是使用生命周期可持续性评估 (LCSA) 方法和工具来衡量的,这些方法和工具支持许多工业和商业部门的明智决策。材料关键性评估增强了 LSCA,这是一种越来越重要的手段,用于监控一组具有高经济和技术重要性的资源的供应链风险和安全性。尽管 LCSA 和 MCA 是全球可持续发展的宝贵辅助手段,但它们耗费时间和资源,因此经常被忽视、利用不足或利用不当。在 LCSA 和 MCA 活动中使用和整合 AI 具有巨大的潜力,可以加速可持续实践的发展以及从线性经济向循环经济的转变。在 LCA 中使用 AI 是一项新兴活动,因此,该项目为世界领先的创新提供了潜力,将直接增强可持续性指标并鼓励更明智的可持续发展。
肌营养不良症 (MD) 是一组罕见的遗传性疾病,会导致骨骼肌逐渐无力,并出现营养不良病理表型。它们分为九种主要类型:肌强直、杜兴氏、贝克尔、肢带、面肩肱型、先天性、眼咽型、远端型和埃默里-德雷富斯型 (Mercuri 等人,2019)。其中,成年人最常见的形式是肌强直性营养不良症 (DM),每 3000 人中就有 1 人受到影响,是由 DMPK(DM1:# 160900)或 CNBP(DM2:# 602668)基因座突变引起的(Mateos-Aierdi 等人,2015)。另一方面,儿童期最常见、最严重的遗传性营养不良症是杜氏肌营养不良症 (DMD,ONIM:#310200),每 5000 名新生男婴中就有 1 名患有此病 (Mendell 等人,2012 年),其原因是肌营养不良蛋白基因突变导致蛋白质完全缺失 (Ervasti & Sonnemann,2008 年;Hoffman 等人,1987 年)。总体而言,MD 涉及 40 多个基因的突变,这些基因导致不同的发病分子机制(详见 (Mercuri et al., 2019))。除了 MD 之外,在其他病理生理情况下也会观察到肌肉功能缺陷,例如大面积创伤、癌症或肌肉废用导致的萎缩(即身体固定后)(Sartori et al., 2021),或与年龄相关的肌肉质量损失、肌肉减少症(Muñoz-C anoves et al., 2020),这给不同的国家卫生系统带来了沉重的负担。因此,旨在改善生理和病理情况下的肌肉功能的策略和干预措施仍然是科学和医学界面临的关键挑战。在这种背景下,纳米医学提供了大量前所未有的工具,可以彻底改变我们看待骨骼肌疾病再生医学的方式。一方面,组织再生纳米医学利用纳米尺度材料作为药物输送系统 (DDS),利用细胞水平的内源性运输在纳米长度尺度上主动驱动这一事实 (Pozzi et al., 2014)。纳米粒子 (NPs) 的高表面体积比有利于生长因子 (Z. Wang, Wang, et al., 2017)、寡核苷酸 (Roberts et al., 2020)、细胞因子 (Raimondo & Mooney, 2018) 和其他生物活性剂的负载,以促进组织再生,而丰富的表面化学性质允许用靶向配体修饰 NPs,以确保更精确的输送。通过保护其有效载荷免于降解,NPs 可提高其药代动力学和生物利用度 (Fathi-Achachelouei et al., 2019)。就材料组成而言,有机纳米颗粒(即脂质体、聚合物、固体脂质纳米颗粒)具有悠久而成功的临床应用历史,可以保证良好的生物相容性和生物降解性(Colapicchioni,2020 年)。而无机纳米颗粒(即金属、氧化物、碳基、二氧化硅等)则表现出更高的化学稳定性,更容易合成和功能化,并且对内部(pH、温度、氧化还原电位)和外部(光、超声波和磁场)刺激具有良好的响应性(Mclaughlin 等人,2016 年)。此外,这些 NP 的独特光学特性(荧光、等离子体吸光度等)允许它们作为成像剂使用,因为它们允许在纳米图案支架或 DDS 内进行卓越的时空控制。然而,尽管具有这些吸引人的特性,无机 NP 在临床转化方面还不够成熟,而且它们的潜在毒性是一个值得关注的重要问题(Yang 等人,2019 年)。纳米医学彻底改变了骨骼肌再生的第二个领域是生物工程方法。骨骼肌再生研究的很大一部分集中在合成仿生支架以供细胞附着和生长以维持组织重建。纳米级材料的主要优势之一是可以优化这些支架的物理和生物特性,从而实现高度定制的平台。不同的纳米材料被用于优化支架的物理特性(即机械强度、电导性)并提供可控的生物活性剂释放。在这种情况下,纳米纤维支架通过改善系统架构提供拓扑支持以引导肌纤维分化和排列。另一方面,导电支架利用骨骼肌组织的内在兴奋性来调节肌肉细胞的存活、增殖和分化特性(Langridge 等人,2021 年)。本综述概述了纳米材料在肌肉疾病中的应用,重点介绍它们在组织工程方法和作为 DDS 的应用,并探索某些无机 NP 作为免疫调节剂的内在潜力(图 1)。本研究还将讨论该领域的未来前景以及限制这些纳米系统从实验室到临床的有效转化的困难。骨骼肌再生研究的很大一部分集中在合成仿生支架上,用于细胞附着和生长以维持组织重建。纳米级材料的主要优势之一是可以优化这些支架的物理和生物特性,从而实现高度定制的平台。不同的纳米材料被用来优化支架的物理特性(即机械强度、电导性)并提供受控的生物活性剂释放。在这种情况下,纳米纤维支架通过改善系统架构提供拓扑支持以引导肌纤维分化和排列。另一方面,导电支架利用骨骼肌组织的内在兴奋性来调节肌细胞的存活、增殖和分化特性(Langridge 等人,2021 年)。本综述概述了纳米材料在肌肉疾病中的应用,重点介绍了它们在组织工程方法和 DDS 中的应用,并探索了一些无机 NP 作为免疫调节剂的内在潜力(图 1)。本研究还将讨论该领域的未来前景以及限制这些纳米系统从实验室到临床的有效转化的困难。骨骼肌再生研究的很大一部分集中在合成仿生支架上,用于细胞附着和生长以维持组织重建。纳米级材料的主要优势之一是可以优化这些支架的物理和生物特性,从而实现高度定制的平台。不同的纳米材料被用来优化支架的物理特性(即机械强度、电导性)并提供受控的生物活性剂释放。在这种情况下,纳米纤维支架通过改善系统架构提供拓扑支持以引导肌纤维分化和排列。另一方面,导电支架利用骨骼肌组织的内在兴奋性来调节肌细胞的存活、增殖和分化特性(Langridge 等人,2021 年)。本综述概述了纳米材料在肌肉疾病中的应用,重点介绍了它们在组织工程方法和 DDS 中的应用,并探索了一些无机 NP 作为免疫调节剂的内在潜力(图 1)。本研究还将讨论该领域的未来前景以及限制这些纳米系统从实验室到临床的有效转化的困难。
视频人工智能系统的成本和收益如何?视频人工智能:初始成本和长期收益 投资人工智能是许多公司经常谈论的事情。但您实际上投资的是什么?成本是多少?长期收益是什么?在本白皮书中,我们将解释如何以及为何投资视频人工智能。 为什么要投资视频人工智能?主要原因是视觉图像包含非常重要的数据。通过使用这些数据,您可以作为一家公司脱颖而出,目标是为您的客户提供更好的解决方案。 通过投资视频人工智能 (Video AI),您可以从视频数据中获得正确的智能信息。简而言之,人工智能 (AI) 以高度智能的方式识别、分类和索引镜头。在此基础上,可以搜索、编辑和量化收集和分类的数据。人工智能软件实时处理视频数据,以便您可以在发生检测警报时快速评估和响应。此外,可以轻松检索现有视频片段。因此,您可以快速搜索数千小时的镜头以查找所需的事件。当 AI 系统识别、分类和索引素材时,会产生额外的数据。从长远来看,这些收集到的元数据可以成为有价值的商业智能的额外来源。可以使用各种商业智能工具清晰地以图形方式显示这一点。当您考虑实施视频 AI 系统时,重要的是要正确评估总购置成本。换句话说,就是总拥有成本 (TCO)。当然,这些成本会根据每个组织的独特需求和情况而有所不同。本白皮书将概述系统要求、基础设施、网络和实施方面的各种实施因素和相关成本考虑因素。以及该产品可以提供的巨大长期节省。系统要求视频 AI 是一种智能软件技术,但为了使软件正常运行,外围设备必须到位。提前清楚了解所需的系统要求非常重要。IP 摄像机的数量、所需的 AI 功能以及安装类型(本地、远程或云)的组合决定了所需的系统要求。一些视频 AI 平台易于与已安装的 IP 摄像机结合使用。在销售过程中提出这一点很重要,因为它会影响初始投资。一个好的视频 AI 实施合作伙伴可以就所需的硬件为您提供建议。为了达到预期的效果,确定摄像机的类型和摄像机的位置非常重要。基础设施视频 AI 解决方案的基础设施因需求而异。有些人希望为多个位置提供集成解决方案,而其他人可能会考虑将视频 AI 用于单个位置。IP 摄像机、AI 服务器和 NVR/VMS 系统都可以位于一个物理位置本地,也可以位于多个物理位置。将物理位置上的摄像机与(公共)云中的软件相结合也是可能的。同样,正确的 AI 实施合作伙伴的作用非常重要。
CIPL 对欧盟委员会关于《人工智能法案》草案的咨询的回应 CIPL 1 欢迎就欧盟委员会关于《欧洲人工智能法案》2(“AI 法案”或“法案”)的提案进行咨询,以将其纳入欧盟立法程序。CIPL 很高兴看到《人工智能法案》采纳了 CIPL 关于采用基于风险的方法监管欧盟人工智能的文件中提出的几项建议。3 这些建议旨在培养对人工智能的信任,而不会妨碍其负责任的发展。特别是,CIPL 欢迎该法案基于风险的方法,该方法将适用于高风险的人工智能用例,而不会监管人工智能技术本身或整个行业。CIPL 还欢迎拟议使用统一标准和行业自我评估产品符合性,因为这些机制已被证明能够成功推动创新并在欧盟市场开发安全可信的技术。CIPL 还欢迎旨在支持创新的措施,特别是通过为监管沙盒提供法定基础。最后,CIPL 很高兴看到《人工智能法案》中概述的一些要求与一些现有的行业惯例相一致,这些惯例为确保负责任地开发和使用人工智能设定了高标准。4 然而,CIPL 遗憾的是,《人工智能法案》没有充分考虑到一些必要条件,例如提供基于结果的规则;明确允许组织根据人工智能系统的风险和收益来调整对要求的遵守情况;奖励和鼓励负责任的人工智能实践;利用监管沙盒的经验教训;并澄清《人工智能法案》的监督和执行条款也应基于风险。CIPL 重申,要使《人工智能法案》有效地保护基本权利,同时也为欧盟创新的新时代奠定基础,它需要足够灵活以适应未来的技术。此外,该法案不能过于严格,以免抑制包括公共卫生或环境在内的一系列行业和部门对人工智能的宝贵和有益的创新和使用。最后,《人工智能法案》将受益于有针对性的调整,以更好地明确人工智能提供者、部署者和用户的责任平衡,特别是对于通用人工智能和开源人工智能模型。
1. 培养加拿大下一代混合功能材料领域的领导者,重点关注高效储能。2. 培养一批具有国际研究视野和世界一流研究卓越培训的加拿大研究人员。3. 加强材料科学研究方面的国际合作(特别是与德国的合作)。4. 培养一批在纳米材料科学和设备制造方面具有国际联系的研究人员。5. 培养学生成为学术界、政府、聚合物/材料化学行业的领导者和/或在能源、光学和微电子工业领域工作,或成为企业家。
在2015年,瑞典的县行政委员会被赋予制定绿色基础设施的区域行动计划,以增强当局在其工作中所做的战略工作,包括土地使用变化,以增强物理计划,申请和许可。行动计划的目的是在景观水平上识别生物型和结构,这些景观水平对管理层维护或改善生物多样性和生态系统服务的状态至关重要。为瑞典每个县发布的区域行动计划。在VästraGötaland县的计划中(2019年县行政委员会),Valle-Billingen地区被确定为具有阔叶森林密度重要的景观。这种类型的生物管道(指定的生物群落)具有特殊的兴趣,而绿色基础设施行动计划指出,在该领域中保护和改善基础设施的重要性。但是,还有一棵需要开放土地的有珍贵的树木的生物群。,并且,由于阔叶森林是一片封闭的森林,但是宝贵的树木需要开放的土地,因此这两个生物植物可能会争夺太空。要检查如何解决这场潜在的冲突,我们在这里提出了一项研究,该研究使用了整体研究,同时考虑了Valle-Billingen(以下称)在瑞典的VästraGötaland的Valle-Billingen(以下简称Valle)的生物多样性能力和管理。
免责声明本文件是作为美国政府赞助的工作的帐户准备的。虽然该文件被认为包含正确的信息,但美国政府,其任何机构,加利福尼亚大学或其任何雇员的董事均未对任何信息,设备,产品或流程的准确性,完整性或有效性,都不会有任何法律责任,或者承担任何法律责任,这些责任是任何信息,设备,产品或流程所披露或代表其私人私有权利的使用权。以此处提到任何特定的商业产品,流程或服务的商标,商标,制造商或其他方式,并不一定构成或暗示其认可,推荐或受到美国政府或其任何机构或加州大学摄政的认可,建议或偏爱。本文所表达的作者的观点和意见不一定陈述或反映美国政府或其任何机构的观点或加利福尼亚大学的摄政。
本文件是作为美国政府赞助的工作的帐户准备的。虽然该文件被认为包含正确的信息,但美国政府,其任何机构,加利福尼亚大学或其任何雇员的董事均未对任何信息,设备,产品或流程的准确性,完整性或有效性,都不会有任何法律责任,或者承担任何法律责任,这些责任是任何信息,设备,产品或流程所披露或代表其私人私有权利的使用权。以此处提到任何特定的商业产品,流程或服务的商标,商标,制造商或其他方式,并不一定构成或暗示其认可,推荐或受到美国政府或其任何机构或加州大学摄政的认可,建议或偏爱。本文所表达的作者的观点和意见不一定陈述或反映美国政府或其任何机构的观点或加利福尼亚大学的摄政。
LabVantage Solutions 是企业实验室软件解决方案领域公认的领导者,致力于通过将数据转化为知识来改善客户成果。LabVantage 信息学平台具有高度可配置性,集成在通用架构中,并且 100% 基于浏览器,可支持数百个并发用户。它可通过云或 SaaS 在本地部署,与仪器和其他企业系统无缝对接,实现真正的数字化转型。该平台包括最现代的实验室信息管理系统 (LIMS)、集成电子实验室笔记本 (ELN)、实验室执行系统 (LES)、科学数据管理系统 (SDMS) 和我们的高级分析解决方案 (LabVantage Analytics);以及适用于医疗保健环境的实验室信息系统 (LIS)。我们为生命科学、制药、医疗设备、生物库、食品和饮料、消费品包装、石油和天然气、遗传学/诊断和医疗保健行业的 1500 多个全球客户站点提供支持。 LabVantage 总部位于新泽西州萨默塞特,在全球设有办事处。四十年来,LabVantage 一直提供全面的产品和服务组合,帮助客户在研发周期中加快创新速度、提高制造产品质量、实现准确的记录保存并遵守监管要求。如需了解更多信息,请访问 labvantage.com。