●光电极,PMT的一部分,从光中吸收入射光子。当光子撞击光电电极时,电子将通过光电效应释放。●Dynode,Dynodes是串联的次级电极,比光电极具有更高的电势,它用作电子乘数。●阳极,收集了在级联反应中生成的所有电子,并产生与释放的电子数成比例的电流●切割,用作电容器,允许传输输出信号●IC是半导体。它可能包括放大器,过滤器和其他组件
人工生物分子纳米管是一种有前途的方法,可以建立模仿细胞细胞骨架能力生长和自我组织动态的材料。核酸纳米技术已经证明了各种自组装纳米管具有与实际细胞骨架成分的可编程,可靠的特征和形态学相似性。他们的产量通常需要热退火,这不仅与生理条件不相容,而且还阻碍了持续生长和动态自组织的可能性。在这里,我们报告了DNA纳米管,这些纳米管从恒定的室温下的五个短DNA链的简单混合物中进行自组装,并且在延长时间内可持续生长的能力显着。The assembly, done in a monovalent salt buffer (here, 100 mM NaCl), ensures that the nanoscale features of the nanotubes are preserved under these isothermal conditions, enabling continuous growth up to 20 days and the formation of individual nanotubes with near flawless arrangement, a diameter of 22 ± 4 nm, and length of several tens of micrometers.我们证明了单价阳离子以实现此类特性的关键作用。我们最终将链封装在微型隔室中,例如油中的微粒和巨型Unilamellar囊泡,它们用作简单的细胞模型。值得注意的是,纳米管不仅在这些条件下等温管生长,而且还会自组织为动态的高阶结构,例如环和动态网络,表明可以从持续生长和限制的结合中出现类似细胞骨架的特性。我们的研究提出了一种工程生物分子支架和材料的方法,以表现出持续的动态和栩栩如生的特性。
通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,
B.按计划结果取得进展4。结果区域1:扩大私人提供者的参与度:从Covid-19-19大流行对结核病(TB)通知率的负面影响中恢复过来,国家TB消除计划(NTEP)观察到2022年有史以来从私营部门发出的最高通知。印度2022年结核病的总案例通知为242万,超过了240万的大大传统高点。从九个计划国家对TB患者通知的累计成就为677,925,到2023年12月底,第5年的目标为800,000。针对此指标的成就估计达到了目标的84.7%,即在报告期结束时(5年级结果,即2023年12月)。 与印度政府中央结核病部(CTD)密切合作,世界银行任务小组对在州和国家一级部署技术支持单位(TSU)的学习进行了探索活动。 与CTD和MSH合作,该团队在2024年2月8日的调查结果上进行了传播活动。针对此指标的成就估计达到了目标的84.7%,即在报告期结束时(5年级结果,即2023年12月)。与印度政府中央结核病部(CTD)密切合作,世界银行任务小组对在州和国家一级部署技术支持单位(TSU)的学习进行了探索活动。与CTD和MSH合作,该团队在2024年2月8日的调查结果上进行了传播活动。
结核病(TB)是由于单一传染药引起的主要死亡原因(1)。该疾病是由结核分枝杆菌(MTB)感染引起的,该疾病被认为是通过活性肺结核患者传播的。有趣的是,许多人被感染但没有表现出任何症状。目前,世界卫生组织估计,全球人口中有1/4已暴露于这种病原体(1)。确定MTB感染结果的因素包括与宿主与病原体之间相互作用相关的几个方面(2)。与MTB进行了第一次接触后,对MTB的免疫反应的许多组成部分具有牢固的诱导,包括与先天和适应性免疫反应的激活,这将确定暴露后的临床结果,范围从无症状的MTB消除到临床表现范围的活动性疾病范围。
在美国内布拉斯加州,立方体卫星被用于测量地面水的蒸发量,分辨率达到 3 米。立方体卫星产生的数据与地面气象塔的地面数据进行了比较。尽管这些地面塔也可以成为测量水蒸发量并利用数据预测和检测干旱的解决方案,但使用立方体卫星更为可行。农民维护地面设备并不断检查的成本将高于使用立方体卫星。这些立方体卫星还显示出与地面数据(来自地面仪器)的高度相关性。下面的数据显示了内布拉斯加州三个不同田地的每日蒸发率,以及卫星数据和地面塔数据(红线和蓝线)的相关性。如果将地面塔数据视为可接受值,则卫星数据的 r^2 为 0.86–0.89,平均绝对误差在 0.06 至 0.08 毫米/小时之间。 (Aragon 等人,2021 年),从而展示了如何使用立方体卫星数据来取代这些传统的气象塔。:
摘要:胶体纳米晶体 (NC) 的自组装在固态材料的多尺度工程中具有巨大前景,通过这种技术,原子工程 NC 构件被排列成具有协同物理和化学性质的长程有序结构 超晶格 (SL)。迄今为止,报告主要集中在球形 NC 的单组分和二元系统上,产生的 SL 与已知的原子晶格同构。通过组合各种形状的 NC,可以预期获得远远超出已知晶格范围的更大结构空间。本文报道了空间稳定的 CsPbBr 3 纳米立方体 (5.3 纳米) 与圆盘状 LaF 3 NC (直径 9.2 - 28.4 纳米,厚度 1.6 纳米) 共组装成二元 SL 的过程,产生了具有 AB、AB 2 、AB 4 和 AB 6 化学计量的六柱状结构,这在之前和我们的参考实验中均未观察到,参考实验中使用由球体和圆盘组成的 NC 系统。本文使用填充密度计算合理化了立方体形状的这种惊人效果。此外,在尺寸相当的纳米立方体(8.6 纳米)和纳米盘(6.5 纳米、9.0 纳米、12.5 纳米)系统中,还观察到了其他非柱状结构,例如 ReO 3 型 SL,其特征是盘和立方体的紧密混合和面对面排列,纳米立方体的面心立方或简单立方亚晶格,以及每个晶格位置有两个或三个盘。层状和 ReO 3 型 SL 采用大型 8.6 纳米 CsPbBr 3 NC,表现出集体超快光发射 超荧光 的特征,源自激发态发射偶极子的相干耦合。关键词:胶体纳米晶体、纳米晶体形状、自组装、二元超晶格、电子显微镜、卤化铅钙钛矿、超荧光 I
会议/研讨会参加了国际1。国际分析科学进步国际会议(RAAS),2014年3月27日至29日,印度瓦拉纳西IIT(BHU)化学系(海报介绍)。2。未来应用多功能材料国际会议(ICMFA),2015年10月27日至29日,印度瓦拉纳西IIT(BHU)化学系(海报介绍)。3。第四届国际纳米材料和纳米技术国际会议(ICANN-2015),2015年12月8日至11日,印度IIT Guwahati化学系(海报演示)。 4。纳米科学和技术国际会议(ICONSAT 2016),2016年2月29日,印度Iiser Pune,印度Iiser Pune(海报演示)。 5。2016年4月7日至9日,印度瓦拉纳西IIT(BHU)化学系(BHU),2016年4月7日至9日,国际分析科学进展(RAAS)国际会议(海报演示)。 6。纳米世界生物系统和材料科学进步国际会议(ABSMSNW),2017年2月19日至23日,印度瓦拉纳西IIT(BHU)物理学系(海报演示)。 国家1。 纳米材料与可持续合成策略的全国研讨会,2015年3月21日至22日,印度瓦拉纳西瓦拉纳西化学部化学系(海报演示)2。 第18届CRSI-RSC化学国家研讨会,2016年2月5日至7日,印度昌迪加尔旁遮普大学(海报演示)。 3。 第20届CRSI-RSC化学国家研讨会,2017年2月3日至5日,印度阿萨姆邦古瓦哈蒂大学(海报演示)。第四届国际纳米材料和纳米技术国际会议(ICANN-2015),2015年12月8日至11日,印度IIT Guwahati化学系(海报演示)。4。纳米科学和技术国际会议(ICONSAT 2016),2016年2月29日,印度Iiser Pune,印度Iiser Pune(海报演示)。5。2016年4月7日至9日,印度瓦拉纳西IIT(BHU)化学系(BHU),2016年4月7日至9日,国际分析科学进展(RAAS)国际会议(海报演示)。6。纳米世界生物系统和材料科学进步国际会议(ABSMSNW),2017年2月19日至23日,印度瓦拉纳西IIT(BHU)物理学系(海报演示)。国家1。纳米材料与可持续合成策略的全国研讨会,2015年3月21日至22日,印度瓦拉纳西瓦拉纳西化学部化学系(海报演示)2。第18届CRSI-RSC化学国家研讨会,2016年2月5日至7日,印度昌迪加尔旁遮普大学(海报演示)。3。第20届CRSI-RSC化学国家研讨会,2017年2月3日至5日,印度阿萨姆邦古瓦哈蒂大学(海报演示)。