耐多药结核分枝杆菌 ( Mtb ) 感染严重危害全球人类健康,迫切需要新的治疗策略。高效的基因组编辑工具有助于识别参与细菌生理、发病机制和耐药机制的关键基因和途径,从而有助于开发耐药结核病的新疗法。在这里,我们报告了一个双质粒系统 MtbCBE,用于灭活基因并在 Mtb 中引入点突变。在该系统中,辅助质粒 pRecX-NucS E107A 表达 RecX 和 NucS E107A 以抑制 RecA 依赖性和 NucS 依赖性的 DNA 修复系统,碱基编辑质粒 pCBE 表达结合胞苷脱氨酶 APOBEC1、Cas9 切口酶 (nCas9) 和尿嘧啶 DNA 糖基化酶抑制剂 (UGI) 的融合蛋白。这两个质粒共同实现了结核分枝杆菌基因组中所需位点处 G:C 到 A:T 碱基对的有效转换。碱基编辑系统的成功开发将有助于阐明结核分枝杆菌致病机理和耐药性的分子机制,并为开发其他微生物的碱基编辑工具提供重要启发。
TALE 碱基编辑器是最近添加到基因组编辑工具箱中的。这些分子工具是转录激活因子样效应结构域 (TALE)、分裂 DddA 脱氨酶半体和尿嘧啶糖基化酶抑制剂 (UGI) 的融合,它们具有直接编辑双链 DNA 的独特能力,将胞嘧啶 (C) 转化为胸腺嘧啶 (T)。为了剖析 TALE-BE 的编辑规则,我们将数十个靶向核基因组位点的 TALE-BE 的筛选与基于将 TALE-BE 靶位点集合精确敲入细胞基因组的中/高通量策略相结合。后一种方法使我们能够深入了解 cellulo 中的编辑规则,同时排除不同基因组位点之间的表观遗传和微环境差异等混杂因素。利用获得的知识,我们设计了靶向 CD52 的 TALE-BE,并实现了非常高的基因敲除频率(高达 80% 的表型 CD52 敲除)。我们进一步证明 TALE-BE 仅产生微不足道的插入/缺失和副产物。最后,我们将两种分子工具(TALE-BE 和 TALEN)结合起来进行多重基因组工程,产生高水平的双基因敲除(~75%),而不会在两个靶位点之间产生易位。
摘要:文章在绪论部分,简要讨论了牵引大型飞机的基本原理和方法。然后,对牵引各种大型客机时发生的事件进行分析。在此基础上,找出了拖曳过程中造成飞机损坏的主要原因。在此基础上,确定了已识别风险因素的百分比份额,表明主要原因是广为人知的人为因素,特别是操作和机组人员失误。最后,根据分析结果,制定了可以实施的预防建议,以避免类似事件的发生。所进行的分析促进了该领域的进一步研究和持续风险分析的必要性,这应尽量减少拖曳过程中发生的事故数量。
摘要:文章的引言部分简要讨论了牵引大型飞机的基本原理和方法。然后,对牵引各种大型客机时发生的事件进行了分析。在此基础上,确定了拖航过程中飞机损坏的主要原因。在此基础上,确定了已识别风险因素的百分比份额,表明主要原因是广泛理解的人为因素,特别是操作员和机组人员的错误。最后,根据分析,制定了可以实施的预防建议,以避免类似事件的发生。所进行的分析激发了该领域的进一步研究以及持续风险分析的需求,这应最大限度地减少拖曳过程中发生的事件数量。
摘要:本文在引言部分简要讨论了牵引大型飞机的基本原理和方法。然后对各类大型客机牵引过程中发生的事件进行了分析。在此基础上,找出了拖曳过程中造成飞机损坏的主要原因。在此基础上,确定了已识别风险因素的百分比份额,表明主要原因是广为人知的人为因素,特别是操作和机组人员失误。最后,根据分析结果,制定了可实施的预防建议,以避免类似事件的发生。所进行的分析促进了该领域的进一步研究和持续风险分析的必要性,从而最大限度地减少拖曳过程中发生的事故数量。
摘要:本文在引言部分简要讨论了牵引大型飞机的基本原理和方法。然后对各类大型客机牵引过程中发生的事件进行了分析。在此基础上,找出了拖曳过程中造成飞机损坏的主要原因。在此基础上,确定了已识别风险因素的百分比份额,表明主要原因是广为人知的人为因素,特别是操作和机组人员失误。最后,根据分析结果,制定了可实施的预防建议,以避免类似事件的发生。所进行的分析促进了该领域的进一步研究和持续风险分析的必要性,从而最大限度地减少拖曳过程中发生的事故数量。
摘要:本文在引言部分简要讨论了牵引大型飞机的基本原理和方法。然后对各类大型客机牵引过程中发生的事件进行了分析。在此基础上,找出了拖曳过程中造成飞机损坏的主要原因。在此基础上,确定了已识别风险因素的百分比份额,表明主要原因是广为人知的人为因素,特别是操作和机组人员失误。最后,根据分析结果,制定了可实施的预防建议,以避免类似事件的发生。所进行的分析促进了该领域的进一步研究和持续风险分析的必要性,从而最大限度地减少拖曳过程中发生的事故数量。
花生 ( Arachis hypogaea L.) 是豆科植物的异源四倍体,能够在热带和亚热带地区生长茂盛,被认为是一种很有前途的全球油籽作物。提高油酸含量已成为花生育种的主要目标之一,因为它具有降低血液胆固醇水平等健康益处、抗氧化特性以及延长保质期等工业效益。花生基因组测序已证明存在编码脂肪酸去饱和酶 2 ( FAD2 ) 的同源基因 AhFAD2A 和 AhFAD2B,它们负责催化单不饱和油酸转化为多不饱和亚油酸。研究表明,导致 FAD2 基因移码或终止密码子的突变会导致油中油酸含量升高。在本研究中,使用与不同脱氨酶融合的 Cas9 构建了两个表达载体 pDW3873 和 pDW3876,并测试了它们作为诱导花生 AhFAD2 基因启动子和编码序列点突变的工具。两种构建体都含有单核酸酶无效变体 nCas9 D10A,PmCDA1 胞嘧啶脱氨酶与该变体融合到 C 端(pDW3873),而 rAPOBEC1 脱氨酶和尿嘧啶糖基化酶抑制剂 (UGI) 分别融合到 N 端和 C 端(pDW3876)。将三个 gRNA 独立克隆到两个构建体中,并在 AhFAD2 基因的三个靶位点测试其功能和效率。两种构建体都显示出碱基编辑活性,其中在靶向编辑窗口中胞嘧啶被胸腺嘧啶或其他碱基取代。 pDW3873 的效率高于 pDW3876,表明前者是花生中更好的碱基编辑器。这是一个重要的进步,因为将现有突变基因渗入优良品种可能需要长达 15 年的时间,这使得该工具对花生育种者、农民、行业以及最终对消费者都大有裨益。
反应性中间体:碳烯,硝酸盐,自由基,碳纤维,碳纤维和苯甲酸化学化学的概述和修订。反应分类:简要介绍替代,消除,添加,氧化,还原,重排和周期性反应。
致电获取免费的语言援助服务以及适当的辅助辅助工具和服务。致电即可获得免费的语言援助服务以及适当的辅助和辅助服务。 致电获取免费语言协助服务以及适当的辅助设备和服务。 致电获取免费语言协助服务以及适当的辅助设备和服务。 致电获取免费语言协助服务以及适当的辅助设备和服务。 致电获取免费语言协助服务以及适当的辅助设备和服务。申请免费的语言支持服务和适当的辅助设备和服务。致电获取免费翻译服务和其他支持工具和服务。致电获取免费语言协助服务以及适当的额外帮助和服务。联系我们获得免费语言支持和相关附加服务。请拨打电话以获得高棉语免费帮助,并解答您可能遇到的任何问题。 如需免费语言协助服务和适当的辅助设备和服务,请拨打以下号码:Tajaajiloota deeggarsa afaan bilisaa fi gaagarsaa fi tajaajiloota barbaachisaa ta'an argachuuf bilbilaa。致电获取免费的语言援助服务以及适当的辅助设备和服务。请求免费的语言支持服务和合适的辅助和服务。免费致电获取适合您的语言帮助和特殊服务。致电可获得免费的语言援助和适当的辅助服务。致电即可获得免费的语言协助服务以及适当的辅助和辅助服务。致电我们获取免费语言支持以及适当的支持和帮助。致电获取免费的语言协助和辅助服务以及适当的辅助服务。致电获取免费的语言援助服务以及适当的辅助和辅助服务。