随着机器人技术的不断发展,增强现实(AR)与机器人远距离的整合正在成为一种变革性的方法,从而增强了人类与各个领域的互动和控制机器人的互动方式。机器人现在正在使用更复杂的情况。将AR纳入远距离工作为提高这些机器人应用的准确性,安全性和效率开辟了新的途径。本期本期旨在展示将AR与Telecorerated机器人系统融合到界限的研究量身定制,可通过使用增强现实来增强机器人的远程操作。感兴趣的主题包括但不限于AR界面设计,感觉反馈增强,适应AR的控制系统以及评估AR对Teleperation功效的影响的经验研究。
摘要:数据增强对于像素的注释任务(如语义分割)至关重要,在语义分段中,标签会重大努力和大量劳动。传统方法,涉及简单的转换,例如旋转和翻转,创建新图像,但通常沿关键语义维度缺乏多样性,并且无法改变高级语义属性。为了解决这个问题,生成模型已成为通过生成合成图像来增强数据的有效解决方案。可控的生成模型通过使用提示和来自原始图像的视觉引用为语义分割任务提供数据增强方法。但是,这些模型在生成合成图像时面临挑战,这些图像由于难以创建有效的提示和视觉参考而准确地反映原始图像的内容和结构。在这项工作中,我们引入了使用可控差异模型进行语义分割的有效数据增强管道。我们提出的方法包括使用类别附加和视觉事先融合的类别添加的有效及时生成,以增强对真实图像中标记的类的关注,从而使管道能够生成精确数量的增强图像,同时保留分割标记的类的结构。此外,我们在合成和原始图像合并时实现了平衡算法的类平衡算法。对Pascal VOC数据集的评估,我们的管道证明了其在生成语义分割的高质量合成图像方面的有效性。我们的代码可在此HTTPS URL上找到。
增强智能将人类和人造代理人汇集在一起,以创建一个社会技术系统,以便它们通过学习和优化直觉接口(例如对话,启用语音的接口)来共同发展和优化决策。但是,关于语音助手的现有研究工作依赖于知识管理和仿真方法,而不是数据驱动的算法。此外,在现实生活中的实际应用和评估稀缺,范围有限。在本文中,我们建议将语音援助技术与自动化机器学习(AUTOML)集成,以便在行业5.0的背景下实现增强情报范式。以这种方式,用户能够通过语音到文本(STT)和文本对语音(TTS)技术与助手进行交互,因此,通过语音自动创建的机器学习(ML)管道来通过语音自动创建的管道,以便在执行任务的同时获得立即的见解。在实际制造环境中评估了所提出的方法。我们遵循一种结构化的评估方法,并分析了结果,这证明了我们提出的方法的有效性。
摘要。术中脑移位是一种众所周知的现象,它描述了由于重力和脑脊液的丧失而在其他现象中描述了脑组织的非刚性变形。这对手术结果具有负面影响,这通常是基于不考虑大脑转移的术前计划。我们提出了一种新型的大脑意识到的增强现实方法,将术前3D数据与通过手术显微镜观察的变形大脑表面相结合。我们将非刚性登记作为形状结构化问题提出。术前3D线状可变形模型被注册到皮质容器的Single 2D图像上,该模型自动分割。此3D/2D登记驱动肿瘤等潜在的大脑结构,并弥补了亚皮质区域的大脑转移。我们评估了由6名材料组成的模拟和真实数据的方法。它实现了良好的定量和定性结果,使其适合神经外科指导。
内窥镜型型方法(ETSA)是一种常用的技术,可以微创地去除卖出和羊角菌病变。假设 ETSA中的增强现实(AR)应用是通过将3D重建模型集成到手术领域中来增强术中可视化的。 本研究描述了与内窥镜外科导航高级平台(EndoSNAP,手术剧院,俄亥俄州克利夫兰,俄亥俄州,俄亥俄州,俄亥俄州,美国)相关的工作流程和手术结果,这是一个用于手术规划和销售术中术中导航的AR平台。 我们分析了使用内核NAP进行ETSA肿瘤切除的患者队列。 术前MRI和CT扫描被重建,并使用手术排练平台软件合并为单个360°AR模型。 然后将模型导入到内osnap中,该模型与内窥镜和神经验证系统集成在一起,以实时术中使用。 记录了患者人口统计学,肿瘤特征,切除程度(EOR)以及内分泌和神经系统结局。 包括新诊断的18名成年患者(83%),复发性(17%)肿瘤包括在内。 病理学由垂体腺瘤(72%),颅咽管瘤(11%),脑膜瘤(11%)和脊全瘤(6%)组成。 56%的患者存在视觉压缩,其中70%的术前视觉缺陷。 在17%的肿瘤中观察到海绵窦侵袭。 分别在56%和28%的病例中注意到术前激素过量和不足。 平均EOR为93.6±3.6%。ETSA中的增强现实(AR)应用是通过将3D重建模型集成到手术领域中来增强术中可视化的。本研究描述了与内窥镜外科导航高级平台(EndoSNAP,手术剧院,俄亥俄州克利夫兰,俄亥俄州,俄亥俄州,俄亥俄州,美国)相关的工作流程和手术结果,这是一个用于手术规划和销售术中术中导航的AR平台。我们分析了使用内核NAP进行ETSA肿瘤切除的患者队列。术前MRI和CT扫描被重建,并使用手术排练平台软件合并为单个360°AR模型。然后将模型导入到内osnap中,该模型与内窥镜和神经验证系统集成在一起,以实时术中使用。记录了患者人口统计学,肿瘤特征,切除程度(EOR)以及内分泌和神经系统结局。包括新诊断的18名成年患者(83%),复发性(17%)肿瘤包括在内。病理学由垂体腺瘤(72%),颅咽管瘤(11%),脑膜瘤(11%)和脊全瘤(6%)组成。56%的患者存在视觉压缩,其中70%的术前视觉缺陷。海绵窦侵袭。分别在56%和28%的病例中注意到术前激素过量和不足。平均EOR为93.6±3.6%。平均术前肿瘤体积为21.4±17cm³,术后降至0.4±0.3cm³。术后并发症包括需要手术修复的CSF泄漏(17%),癫痫发作,与先前存在的半球外伤有关(6%),肺栓塞(6%),深静脉血栓形成(6%)和鼻窦炎(6%)。这些发现表明,通过内部NAP的AR-增强可视化是ETSA的可行且潜在的有益辅助功能,可用于Sellar和Parasellar肿瘤切除。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权所有,于2024年8月16日发布。 https://doi.org/10.1101/2024.08.15.608063 doi:biorxiv preprint
动机:由于高通量和昂贵的测序方法,转录组学数据变得越来越易于访问。但是,数据稀缺性阻止了利用深度学习模型对表型预测的完整预测能力。人工增强训练集,即数据增强,建议作为正规化策略。数据增强对应于训练集的标签不变转换(例如,在文本数据上进行图像和语法解析的几何变换)。不幸的是,这种转换在跨文字组范围内未知。因此,已经提出了深层生成模型,例如生成对抗网络(GAN)来生成其他样本。在本文中,我们分析了基于GAN的数据增强策略,就性能指标和CAR表型的分类分析。
前哨淋巴结活检提供了子宫内膜癌中全淋巴结清扫术的侵入性替代方案,从而减少并发症,同时保持诊断准确性。此病例报告强调了一名34岁的妇女接受机器人辅助手术的子宫内膜癌的妇女的整合和增强现实(AR)的整合。术前成像结合了单光子发射计算机断层扫描和计算机断层扫描确定的前哨淋巴结,使用混合现实(MR)技术可视化。这种方法使手术团队能够准确地了解淋巴结与周围临界结构之间的三维空间关系。全息投影在手术过程中提供了精确的指导,改善了淋巴结识别并最大程度地减少了侵入性。未检测到淋巴结转移,但是由于腹膜中肿瘤播种,证实了国际妇科和妇产科联合会(FIGO)的诊断。患者接受了成功的辅助化疗,未观察到复发。本报告证明了全息图和AR增强空间意识和手术精度的重要潜力。这些技术代表了患有妇科癌症患者的哨兵淋巴结活检的有希望的进步,这有助于降低手术侵入性和减轻外科医生的压力。
在数值约束优化的背景下,我们研究了通过增强拉格朗日方法处理约束的随机算法,特别是进化策略。在这些方法中,原始约束问题被转变为无约束问题,优化函数是增强拉格朗日,其参数在优化过程中进行调整。然而,使用增强拉格朗日会破坏进化策略的一个核心不变性,即对目标函数严格递增变换的不变性。尽管如此,我们形式化地认为,具有增强拉格朗日约束处理的进化策略应该保持对目标函数严格递增仿射变换和约束缩放的不变性——严格递增变换的一个子类。我们表明这种不变性对于这些算法的线性收敛非常重要,并表明这两个属性是如何联系在一起的。