1。背景气候变化是由于全球温度升高引起的温室效应引起的,对古吉拉特邦面临重大挑战。该地区经历了许多与气候相关的影响,包括平均温度的迅速升高,云覆盖率和降水模式的改变,极端气候条件,海洋温度上升和海平面。这些气候变化涉及在整个州,尤其是在沿海地区施加持续的压力,加剧了现有的脆弱性,并需要采取紧迫的行动以整合适应措施和缓解策略。鉴于居住在海岸线附近的大量人口,尤其是古吉拉特邦(Gujarat),因此需要积极适应以应对气候变化影响的需求是当时的最大需求。许多人认为气候变化是21世纪的首要挑战之一,强调了负责监测此类地区的政府机构迅速采取行动的重要性。将气候适应性纳入沿海管理实践对于减轻气候变化的影响并维护古吉拉特邦的社区和生态系统的福祉至关重要。极端天气对古吉拉特邦古吉拉特邦(Gujarat Gujarat)的影响,其海岸线延伸1,663公里,在40个沿海talukas的990万居民所在地,拥有印度最长的海岸线(人口普查,2011年)。气候变化引起的温度变化预计会加剧,世界银行预计到2050年,古吉拉特邦26个地区的19个地区中,世界银行的温度升高为2-2.5°C,使他们的气候变化热点。该地区对海平面上升,旋风,盐水入侵的敏感性以及鱼产卵模式的转移预示着未来的未来迁移和由于气候变化而引起的社区流离失所,如《联合国世界移民报告》(2020年)所强调。古吉拉特邦的主要气候变化危害包括温度,降水和海平面的极端,每种都会对基础设施,人口人群,各种经济部门和农业产生各种影响。农业与劳动人口的50%吸引了9.5%的农业,对美国的GDP贡献了9.5%,面临着脆弱性的增强,热应激和草地减少了可能减少牲畜和畜牧业的产量,影响该地区的2690万牲畜人口。此外,对于民众日常需求的很大一部分,森林通道仍然至关重要。古吉拉特邦的独特生态系统,尤其是在环境脆弱的库奇奇和索拉什特拉地区,面临着气候变化,荒漠化和栖息地丧失的风险,强调迫切需要全面适应和缓解策略。
全球气候变化对农作物的生长,发育和产量产生了重大影响。中国东北部的大豆生产是中国传统的大豆生产地区之一,对于发展国内大豆工业并减少对进口大豆的依赖而言,具有很大的意义。因此,评估未来气候变化对中国东北大豆产量的影响至关重要,并提出合理的适应措施。在这项研究中,我们以中国东北部的富吉恩市为例,并使用了DSSAT中的Cropgro-Soybean模型(农业技术转移的决策支持系统)模拟未来气候变化对2020年代四个时期(2021-2030)的四个时期的大豆产量的影响(2041-2050)和2050S(2051-2060)在两个代表性浓度途径(RCP)方案(RCP4.5和RCP8.5)下,进一步确定最佳的农艺管理实践。结果表明,校准和经过验证的模型适合在研究区域模拟大豆。通过分析未来气候场景RCP4.5和RCP8.5在Precis区域气候模型中的气象数据,我们发现,在海伦吉安吉安吉省富士城的生长季节,平均温度,累积降水量和累积太阳辐射将主要增加。与模型仿真结果结合在一起,表明在CO 2受精的效果下,未来的气候变化将对大豆产量产生积极影响。与基线(1986-2005)相比,大豆产量将增加0.6%(7.4%),3.3%(5.1%),6.0%(16.8%)和12.3%(20.6%)和2020年代,2030年代,2040年代,2040年代和2050年度的rcp4.5(RCP4.5)(rcp8.5)。 RCP4.5(RCP8.5)分别为5月10日(5月5日)和50 mm(40mm)。在未来的气候条件下,农艺管理实践,例如在大豆增长的关键阶段推进播种日期和补充灌溉,将增加大豆产量,并使大豆增长更适合未来的气候变化。
关于系:物理与材料科学与工程系 (PMSE) 为 ECE、CSE、IT 和生物技术分支的 B.Tech 学生提供多门物理和材料科学基础和高级课程。该系拥有丰富的物理学博士和硕士学位课程。该系认为物理学的目标是从第一原理理解物理世界中一切事物的运作。该系结合物理学和材料科学来解决与能源、纳米技术、量子器件、光学和其他主要工程学科相关的实际问题。该系拥有配备最先进设备的研究实验室。该系专注于纳米科学和多功能纳米材料、能源和先进功能材料、原子和分子物理学、光子学和等离子体学、量子光学和量子信息、光学传感器、振动光谱、拉曼光谱、固态离子学、稀磁半导体 (自旋电子学)、热电和超导材料以及激光等离子体相互作用的研究。此外,系里的教职人员还负责指导博士后研究员。博士后研究员和大量外部资助项目的存在增强了系里的学术氛围。
Div> 130 University of Technology Sydney Australia All Subject 131 Tokyo Institute of Technology Japan All Subject 132 Sapienza University of Rome Italia All Subject 133 Albert-Ludwigs-Universita Freiberg Germany All Subject 134 Emory University Mary University of London England All Subject 137 Vanderbilt University United States All Subject 138 Eberhard Karls Universität Tübingen Germany All Subject 139 University of California, Irvine美国所有主题140 de圣保罗巴西大学所有学科利物浦英格兰都有143个韩国大学韩国学科。
(续)• 指令集• 位、字节、字和长字数据类型• 23 种不同的寻址模式• 使用 32 位累加器提高计算精度• 增强的有符号乘法和除法指令以及 RETI 指令• 为高级语言(C)和多任务设计的指令集• 使用系统堆栈指针• 对称指令集和桶式移位指令• 程序补丁功能(2 个地址指针)。 • 4 字节指令队列 • 中断功能 • 优先级可编程 • 32 个中断 • 数据传输功能 • 扩展智能 I/O 服务功能:最多 16 个通道 • 低功耗模式 • 睡眠模式(CPU 工作时钟停止。) • 时基定时器模式(仅振荡时钟和时基定时器继续工作。) • 停止模式(振荡时钟停止。) • CPU 间歇工作模式(CPU 以指定间隔间歇工作。) • 封装 • LQFP-64P(FTP-64P-M23:0.65 mm 引脚间距) • QFP-64P(FTP-64P-M06:1.00 mm 引脚间距) • SH-DIP(DIP-64P-M01:1.778 mm 引脚间距) • 工艺:CMOS 技术
行业/设备名称:AI Metrics 法规编号:21 CFR 892.2050 法规名称:图片存档和通信系统 监管类别:II 类 产品代码:LLZ 日期:2020 年 11 月 11 日 收讫日期:2020 年 11 月 13 日 尊敬的 Shrestha 医生: 我们已审查了您根据第 510(k) 条提交的上市前通知,该通知表明您有意销售上述设备,并已确定该设备与在 1976 年 5 月 28 日(医疗器械修正案颁布日期)之前在州际贸易中合法销售的同类设备基本等同(就附件中注明的用途而言),或与根据《联邦食品药品和化妆品法案》(法案)的规定重新分类的设备基本等同,这些设备不需要获得上市前批准申请(PMA)的批准。因此,您可以销售该设备,但须遵守该法案的一般控制规定。虽然本函将您的产品称为设备,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备列表、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不会评估与合同责任担保相关的信息。但我们提醒您,设备标签必须真实且不得误导。如果您的设备被归类(见上文)为 II 类(特殊控制)或 III 类(PMA),则可能会受到其他控制。影响您设备的现有主要法规可在《联邦法规》第 21 篇第 800 至 898 部分中找到。此外,FDA 可能会在《联邦公报》上发布有关您设备的进一步公告。请注意,FDA 发布实质等同性判定并不意味着 FDA 已判定您的设备符合该法案的其他要求或其他联邦机构管理的任何联邦法规和规章。您必须遵守该法案的所有
本演示文稿中讨论的某些事项可能包含有关公司市场机会和业务前景的陈述,这些陈述单独和整体上都是前瞻性陈述。此类前瞻性陈述并非对未来业绩的保证,并且受已知和未知风险、难以预测的不确定性和假设的影响。这些风险和不确定性包括但不限于印度经济和各个国际市场经济的表现、印度和全球行业的表现、竞争、公司成功实施其战略的能力、公司未来的增长和扩张水平、技术实施、变化和进步、收入、收益或现金流的变化、公司的市场偏好及其面临的市场风险以及其他风险。公司的实际结果、活动水平、业绩或成就可能与本演示文稿中表达或暗示的结果存在重大差异。公司不承担更新本演示文稿中包含的任何前瞻性信息的义务。本演示文稿中任何第三方做出的前瞻性陈述和预测均不被本公司采纳,且本公司对此类第三方陈述和预测不承担任何责任。
采用单晶体管堆叠栅极单元结构,通过双层多晶硅技术实现。单个单元由底部浮栅和顶部选择栅组成(见图 1)。顶栅连接到行解码器,而浮栅用于电荷存储。通过将高能电子通过氧化物注入浮栅来对单元进行编程。浮栅上电荷的存在会导致单元阈值发生变化(参见图 2)。在初始状态下,单元具有低阈值(VTH1),这将使晶体管在选择单元时(通过顶部选择栅)导通。编程将阈值移至更高水平(VTHO),从而防止单元晶体管在被选择时导通。可以通过检查感测阈值(VTHS)下的状态来确定单元的状态(即是否已编程),如图 2 中的虚线所示。