A Nast、PI Spuls、C Dressler、Z Bata-Csörgö、I Bogdanov、H Boonen、EMGJ De Jong、I Garcia-Doval、P Gisondi、D Kaur-Knudsen、S Mahil、T Mälkönen、JT Maul、S Mburu、L Mercieca、U Mrowietz、A E Rementz、D Ripotor、M Samit -Egenolf、M Sikora、K Strömer、
背景和目的:为提高光催化降解性能,优选使用具有较大表面积的光催化剂颗粒。二氧化钛作为光催化剂的有效性取决于所用的合成方法。该方法影响所生产的催化剂的粒度、结晶度和相组成。本研究旨在开发一种用于棕榈油厂废水深度处理的纳米二氧化钛光催化剂的绿色合成工艺。方法:二氧化钛纳米粒子的绿色合成使用含有保加利亚乳杆菌培养物和钛氧氢氧化物金属氧化物的德曼-罗戈萨-夏普肉汤培养基。研究的因素是钛氧氢氧化物的摩尔浓度(0.025 摩尔;0.035 摩尔和 0.045 摩尔)和温度(40;50 和 60 摄氏度)。使用粒度分析仪对合成的光催化剂进行表征以确定粒度。所生产的纳米粒子尺寸范围为 1-100 纳米的光催化剂进一步采用扫描电子显微镜-能量色散 X 射线和 X 射线衍射进行表征。对光催化剂进行了棕榈油厂二级废水深度处理测试。本次测试研究的因素包括辐射时间和二氧化钛光催化剂剂量。处理性能从废水质量和污染物去除效率两个方面进行评估。结果:利用保加利亚乳杆菌通过钛氧氢氧化金属氧化物生物合成了纳米二氧化钛光催化剂。在 60 摄氏度的温度下和 0.025 摩尔金属氧化物溶液中进行的合成过程产生了尺寸为 33.28 纳米的二氧化钛光催化剂。经测定,光催化剂中钛和氧组分的含量分别为39.06%和47.95%,二氧化钛结晶度为67.6%,θ度为25.4。这表明绿色合成制备了锐钛矿衍射纳米二氧化钛光催化剂。用该二氧化钛光催化剂处理棕榈油厂二级废水,化学需氧量去除率为16.16-27.27%,生物需氧量去除率为11.05-21.95%。苯酚具有毒性并且难以生物降解,在使用1克/升光催化剂剂量,照射2.5小时的情况下,可以显著去除苯酚(高达81.12%)。结论:纳米二氧化钛光催化剂的生物合成受温度和金属氧化物浓度的影响。棕榈油厂二级废水光催化深度处理工艺表明,该合成工艺可有效去除酚类物质。木质素、氨基酸和果胶等化合物在该工艺中矿化不明显。
摘要。能源是一种驱动世界经济的资源,也可以维持个人的存在。能源是一种战略利益,为某些人提供了优势,为其他人提供了优势。传统能源的分布均匀分布,这是政客和经济学家满足不断增长的能源需求的挑战。可再生能源弥合了传统对增长的理解与对环境保护的现代需求之间的差距。它们是过去与未来之间的妥协。该报告的目的是综合保加利亚使用可再生能源的可能性和局限性。研究使用了经验方法,例如分析和调查。结果,如预期的那样,结果证实,在我们国家,有未使用的机会可以从可再生来源开发能源生产。结论表明,受监管的电力市场,监管限制和保加利亚低收入的低收入是对更密集使用可再生能源的威慑作用。
异质性是细胞中多个线粒体DNA(mtDNA)序列的共存,在植物中有充分的文献证明。下一代测序技术(NGS)使得整个基因组对整个基因组进行了可行。因此,NGS具有检测异质的潜力。但是,异质检测中的方法和陷阱尚未得到充分投资和确定。异质检测的一个障碍是线粒体,塑料和核DNA之间的序列同源性,其中核DNA片段与mtDNA同源(NOMT)的影响需要最小化。为了检测异质,我们首先排除了从糖甜菜mtDNA序列中排除甜菜甜菜(Beta fulgaris)系EL10的核DNA序列。ngs读数是从甜菜线NK-195BRMM-O和NK-291BRMM-O的单个植物中获得的,并映射到未分解的mtDNA区域。通过基因组浏览分析检测到的1000多个位点表现出个体内部多态性。我们专注于一个309 bp的区域,其中12个个体内多形态位点彼此紧密相关。尽管通过NK-195BRMM-O和NK-291BRMM-O的PCR扩增在12个位点存在变异等位基因的DNA分子的存在,但这些变体并不总是由六个变体呼叫程序调用,这表明这些程序不适合内部个体个人个性化的多种形式检测。当我们更改核DNA参考时,发现EL10缺乏的数字包括309 bp区域。NK-195BRMM-O X NK-291BRMM-O的F 2种群的遗传分离支持了变体等位基因的NOMT起源。使用四个参考文献,我们发现NUMT检测表现出参考依赖性,而甜菜线中存在NOMT的极端多态性。EL10中没有发现的numts之一与NK-195mm-O中的另一个个体内多态位点有关。我们的数据表明,在甜菜中,糖的多态性意外高,导致对杂质的真实程度的混乱。
角质层是覆盖地上植物器官的保护层。我们研究了蜡在建立大麦 ( Hordeum vulgare ) 角质层屏障中的作用。大麦蜡质突变体 cer-za.227 和 cer-ye.267 显示蜡负荷减少,但受影响的基因以及蜡变化对屏障功能的影响仍然未知。测量了 cer-za.227 和 cer-ye.267 中的角质层蜡和通透性。通过批量分离 RNA 测序分离突变体基因座。通过基因组编辑产生了新的 cer-za 等位基因。CER-ZA 蛋白在酵母和拟南芥 cer4-3 中表达后进行了表征。Cer-za.227 携带编码酰基辅酶 A 还原酶 (FAR1) 的 HORVU5Hr1G089230 的突变。 cer-ye.267 突变位于编码 b -酮脂酰辅酶 A 合酶 (KAS1) 的 HORVU4Hr1G063420 上,与 cer-zh.54 等位。cer-ye.267 中角质层内蜡质含量明显减少。cer-za.227 的角质层失水和通透性与野生型 (WT) 相似,但在 cer-ye.267 中则有所增加。去除角质层外蜡质表明,调节角质层蒸腾作用需要角质层内蜡质,而不是角质层外蜡质。cer-za.227 和 cer-ye.267 之间角质层内蜡质含量的差异减少以及角质层外蜡质的去除表明,角质层屏障功能主要依赖于角质层内蜡质的存在。
Victor Rosenscheg Ludke 5 Lucas Daniel Samonek Rogetski 5 Luciano Lucas Lozinski 5 Lucas Gulanowski de Lima 5 Amanda Leticia Silveira Kimita 4 Róger Boiarski 4 Thomaz Eduardo Hinka 4 Guilherme de Castro Cavalheiro 4 Maililine Natali Plasse 4 Stefany Schroeder Ramos 4 Victor Tioca 3 Maria Aparecida Mello Schwarz 3 Maria Cristiane Moreira 3 Kaue Guilherme Kvaschinieski 3 Washington Ferreira Carvalho 3 Ana Paula Kutchma 3 Willian Eduardo Doopiati 3 Douglas Pasqualli de Oliveira 3 Giulia Larissa Andrigueto 3 Nicole Fernanda Kmita 3 Gabriele de Castro Cavalheiro 3 Guilherme Schiesl 3Victor Rosenscheg Ludke 5 Lucas Daniel Samonek Rogetski 5 Luciano Lucas Lozinski 5 Lucas Gulanowski de Lima 5 Amanda Leticia Silveira Kimita 4 Róger Boiarski 4 Thomaz Eduardo Hinka 4 Guilherme de Castro Cavalheiro 4 Maililine Natali Plasse 4 Stefany Schroeder Ramos 4 Victor Tioca 3 Maria Aparecida Mello Schwarz 3 Maria Cristiane Moreira 3 Kaue Guilherme Kvaschinieski 3 Washington Ferreira Carvalho 3 Ana Paula Kutchma 3 Willian Eduardo Doopiati 3 Douglas Pasqualli de Oliveira 3 Giulia Larissa Andrigueto 3 Nicole Fernanda Kmita 3 Gabriele de Castro Cavalheiro 3 Guilherme Schiesl 3
中西部地方政府区是 Wiradjuri 人的传统土地。Wiradjuri 人数千年来一直生活在今天的中西部、奥拉纳和瑞文纳大部分地区的土地上,并照料这些土地,并靠这些土地维持生计。在澳大利亚殖民时期早期,随着殖民人口和对农业用地的需求不断增长,Wiradjuri 土地成为向西跨越大分水岭的殖民扩张的对象。这种扩张导致了一系列长期冲突,统称为边境战争。历史记录证实了殖民化给原住民带来的广泛暴力,包括中西部地方政府区记录的事件。本着和解的精神,HillPDA 和中西部地区委员会希望承认这一过去及其持续的影响,并向 Wiradjuri 人及其与本报告所涉及的土地的持续联系表示敬意。
丁型肝炎病毒 (HDV) 是一种小卫星病毒,是迄今为止在人类中发现的最小的病毒,可导致所有病毒性肝炎毒株中最具侵袭性的肝炎。HDV 的历史始于 1977 年,当时意大利都灵胃肠病学系的意大利胃肠病学家和病毒学家 Mario Rizzetto 报告说,他利用免疫荧光技术发现了一种名为 HBsAg 相关 delta 抗原的新抗原 [1]。该抗原是在已感染 HBV 并患有严重肝病的受试者体内发现的。丁型肝炎病毒的正式发现是在 1980 年,其命名法从希腊语改为拉丁语,delta 被 D 取代,例如 HDV [2]。尽管发病率和死亡率在发现 46 年后有所上升,但这种独特的病毒仍然是一个研究不足且被大大低估的谜 [3]。根据国际病毒分类委员会 (ICTV) 的规定,HDV 是 Deltavirus 属的唯一成员,属于 Delatviridae 科 [ 4 ]。最近,HDV 与其他 HDV 样病毒一起被重新归类为 Kolmioviridae,这是新领域 Ribozyviria 中唯一的科,其中 kolmio 在芬兰语中是“三角形”的意思,指的是希腊字母“ ∆ ”(delta)[ 5 , 6 ]。病毒基因组由一个环状单链负 (-) RNA 分子组成,该分子由 1668–1697 个核糖核苷酸组成(取决于基因型)[ 7 ]。HDV 使用 HBV 的 HBsAg 作为包膜,并使用相同的受体进入病毒 [ 8 ]。丁型肝炎病毒核衣壳含有两种 HDAg (δ 抗原颗粒 - HDAg) 亚型:大 (27 kD) 和小 (24 kD)。HDV 仅编码这两种蛋白质。这两种 HDAg 亚型的相对比例调节着复制和病毒组装之间的平衡 [9]。HDV 不编码 RNA 依赖性 RNA 聚合酶,但依赖宿主 DNA 依赖性 RNA 聚合酶将基因组转录并复制到靶细胞中 [10]。HDV 的基因组 RNA 通过滚环机制复制。尽管 HDV 在环状 RNA 基因组的存在和复制机制方面与类病毒相似,但 HDV 的基因组较大且能够编码蛋白质,这与类病毒有明显的不同 [11]。
为评估恐怖主义罪行和将恐怖主义行为定为犯罪提供国家立法依据。这些参数必须确保国家立法之间的相似性和可比性,从而促进刑事诉讼中的国际合作。保加利亚刑法典吸收了这些国际法律文书的规定,这些规定在 2015 年之后在很大程度上反映在《刑法典》中。确保对恐怖主义提供足够的刑事保护是 2015 年修订保加利亚刑法典的主要任务。新规定是为了填补法律漏洞,特别是在恐怖主义行为潜在威胁的背景下,但主要是为了满足联合国安全理事会关于打击恐怖主义的第 2178/2014 号决议的要求。各种措施都是为了减少潜在威胁(FTF、策划或准备恐怖主义行为、支持恐怖主义行为、避免任何为恐怖分子提供避风港的条件)。根据联合国安理会第 2178 号决议,某些旨在在国外实施恐怖主义犯罪的准备活动,包括与参与或训练恐怖主义活动有关的跨境活动,也被视为犯罪。同意接受恐怖主义活动训练的人也被视为犯罪。外国公民在保加利亚境内为在国外实施恐怖主义犯罪所做的准备安排,一般来说,保加利亚《刑法》不适用于此类行为