“如果州[官员]试图执行的行为违反了联邦宪法,那么该官员在根据该法规采取行动时,就与宪法的最高权威相冲突,在这种情况下,他将被剥夺其官方或代表身份,并亲自承担其个人行为的后果。
理解对光的材料结构反应对于推进纳米级超快激光体积结构的加工分辨率至关重要。需要选择性热力学途径以最快的方式淬灭能量传输,并将过程限制在纳米长度上,绕过光学分辨率。在限制下量化材料动力学,可以原位访问瞬态局部温度和密度参数,因此成为理解过程的关键。我们使用时间分辨的定性和定量的光学相显微镜在整个物质α -Quartz中报告热力学状态的原位重建。助热动力学表明快速的空间限制的晶体至不汤过渡到热致密的熔融二氧化硅形式。致密化超过20%,在第一纳秒中,基质温度升至超过2,000 k。这种结构状态在数百纳秒中放松。光束到皮秒持续时间的分散和时间设计增加了空间限制,并触发了基于纳米挥手的极端纳米结构过程,该过程基于纳米挥手发生,在非变形材料中发生,在该材料中,低效率阶段降低了该过程的机械需求。在体积中获得了小于光波长的十分之一的处理特征量表。这允许在3D限制下进行结构和形态学的纳米级材料特征,可以设计光学材料。
食品安全在人类生活中起着至关重要的作用。霉菌毒素是由多种真菌产生的有毒次生代谢产物,它们的生长对人类的生命构成威胁。由于它们的结构多样性和变化的物理特性,霉菌毒素会引起广泛的生物学作用,包括遗传毒性,诱变,致癌性,致伤性和对肾脏,肝,皮肤,神经系统等的毒性作用[1,2]。霉菌毒素是小且高度稳定的分子,使其去除或消除非常困难。他们在保留其有毒特性的同时进入食物链。鉴于霉菌毒素的毒性及其对人类和动物的严重风险,控制从农场到消费者的所有阶段对于最大程度地减少霉菌毒素的产生至关重要。aflatoxin B1(AFB1),富莫诺菌素B1(FB1),脱氧核烯醇(DON),Ochratoxin A(OTA)和Zearalenone(ZEN)是五种主要的霉菌毒素(ZEN)是在农业产品和食物中引起重大主要污染的五种主要霉菌毒素,并创造了最有问题的问题,这些问题是最有问题的问题。
在胰腺癌的治疗研究中,超声靶向的微泡破坏(UTMD)在促进凋亡作为一种安全和非侵入性辅助治疗方面可能显示出潜力。自噬是一种细胞应激反应和存活的调节机制,在肿瘤发育,进展和治疗中起双重作用。然而,自噬在UTMD诱导的胰腺癌细胞凋亡中的作用尚不清楚。在这项研究中,将自噬抑制剂氯喹(CQ)与UTMD结合使用,以治疗体外和体内胰腺癌,并通过Western blot和Tunel染色评估了凋亡的变化。结果表明,UTMD在胰腺癌细胞中诱导了凋亡和自噬。值得注意的是,抑制自噬显着增强了UTMD诱导的凋亡,而抑制凋亡并不影响UTMD诱导的自噬。这些发现表明自噬可降低UTMD在治疗胰腺癌中的有效性。这项研究提供了有关治疗胰腺癌的UTMD的新观点,这表明将自噬抑制剂结合起来可能是提高胰腺癌治疗有效性的有前途的策略。
优化酶在新型化学环境中起作用是合成生物学具有广泛应用的核心目标。在这项工作中,我们通过使用机器学习(ML)从超高通知功能屏幕中融合进化信息和实验数据来开发一种技术,用于设计蛋白质变体的活跃和多样化的蛋白质变体库。我们在多轮运动中验证了我们的方法,以优化NUCB的活性,nucB的活性,核酸酶酶在慢性伤口的治疗中应用。我们将我们的ML引导运动与维特罗定向进化(DE)和尼里科(Silico In-Silico)命中重组(HR)的平行运动进行了比较。ML引导的运动发现了数百种高度活跃的变体,最多有19倍的核酸酶活性改善,表现优于DE发现的12倍改进,并且在命中率和多样性方面表现出色。我们还表明,仅在进化数据上训练的模型而无需访问任何实验数据,就可以比传统的初始图书馆生成方法以明显高的速率设计功能变体。为了推动ML引导酶设计的未来进展,我们策划了一个55K多种变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一。数据和代码可在以下网址提供:https://github.com/google-deepmind/nuclease_design。
在当代寻求无碳和可持续的生活方式的更广泛的背景下,基于锌水的电池以其内在的安全性,效果和环境友善而闻名。,作为一种新生的储能技术,锌 - 碘电池最近引起了大量的研究关注,以其各种基于锌的电池之间的循环寿命和速率性能出色。尽管如此,由于无法从根本上解决水溶液中高度水溶性多碘化物的溶解/扩散问题,因此,锌 - 碘电池的进步受到严重阻碍。这项研究受到提取概念的启发,提出了锌 - 碘电池的全面重新设计,包括电解质和细胞结构,以促进H级,成本效益,无班车和高度可回收的锌 - 碘电池的发展。这项工作提出了一个多功能的研究框架,用于推进锌 - 碘电池的实际实施。
同时,能量结构域中的高分辨率X射线光谱也可以提供对分子系统中超快染色器过程的有用见解。使用单色同步加速器X射线辐射,可以在分子中对特定原子核壳的共振激发。核心兴奋状态的寿命因几个飞秒而异,具有激发能量的相对较浅的核心孔高达1 keV,直到具有较高激发能的深核孔的attosentime量表。通过发射X射线光子或螺旋钻电子的发射在核心激发态的寿命内,可以作为探测分子在同一时间尺度上发生的任何动力学过程的探测。这是“核心时钟”光谱(CHC)的基本概念。6关于
组织学分析是癌症诊断的黄金标准方法。但是,它容易出现主观性和采样偏差。应对这些局限性,我们引入了一种定量的双峰方法,旨在为可疑区域提供非侵入性指导。将光谱光谱和定量超声技术组合在一起,以表征来自动物模型的两种不同的骨肿瘤类型:软骨肉瘤和骨肉瘤。使用两种不同的细胞系诱导骨肉瘤的生长。进行组织学分析作为参考。光反射率的三个超声参数和强度显示,在5%水平上,软骨肉瘤和骨肉瘤之间存在显着差异。同样,尽管在组织学检查中观察到了两种类型的骨肉瘤,但两种类型的骨肉瘤的变化也被报道了两种类型的骨肉瘤。这些观察结果表明我们技术在探测细组织特性中的敏感性。其次,超声基于光谱的技术鉴定了软骨肉瘤细胞和核的平均大小,相对误差分别为22%和9%。光学当量技术正确提取了软骨肉瘤和骨肉瘤的细胞和细胞的散射尺寸分布(分别为9.5±2.6和µ)。软骨肉瘤的核的光散射贡献估计为52%,骨肉瘤的光散射贡献可能分别表明大量和不存在细胞外基质。因此,超声和光学方法带来了互补参数。他们在细胞和核尺度上成功估计了形态学参数,这使我们的双峰技术有望用于肿瘤表征。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月12日。 https://doi.org/10.1101/2025.01.10.632410 doi:Biorxiv Preprint