摘要 公共部门已经看到了人工智能 (AI) 改变和精简其组织的可能性。然而,他们在能力、知识和资源方面落后于私营部门组织,并且在实施任何类型的变革方面都遇到了困难。虽然有关于公共部门内部变革以及此类组织中 AI 使用的研究,但缺乏关于公共组织对 AI 的看法以及基于这些看法的组织分析的研究。本研究旨在解决这一差距,通过研究于默奥市的一个部门,考虑到技术决定论和工具主义,研究他们对 AI 的态度和看法,以及这些态度和看法如何影响未来的实施。通过研究得出的结果包括彻底的分析,显示了来自市政当局和部门的决定论和工具主义观点。虽然缺乏能力和资源,但员工表现出对在工作中加入 AI 和其他数字工具的理解、需求和动机。该研究描述了该部门可以采取的可能方法,并为填补上述研究空白做出了贡献。关键词:人工智能、认知、决定论、工具主义、公共部门
在本文中,我们提出了一种目前使用最广泛的量子计算硬件度量标准(称为量子体积 [1,2])的概括。量子体积指定了一组随机测试电路,这些电路的逻辑电路深度等于计算中使用的量子比特总数。然而,这种方形电路形状与人们可能希望使用量子计算机的许多特定应用并不直接相关。在对已知量子算法的可用资源估计调查的基础上,我们根据逻辑电路深度(时间)随问题大小(量子比特数)的缩放行为,将量子体积概括为少数几种代表性电路形状,我们称之为量子体积类。作为一项技术,量子计算尚处于起步阶段,但发展迅速。在短期内,噪声和中等规模量子 (NISQ) 系统可能对特定的小众应用有用 [3]。从长远来看,随着容错 (FT) 系统的发展,这项技术有望带来极大的颠覆性和变革性。评估这项技术的明确指标是
不稳定性发生在固态复合阴极(SSC)中,该阴极(SSC)由阴极活性材料(CAM),SE和通常碳添加剂的颗粒混合物组成。氧化物和硫化物是SE的两个最精心研究的群体。氧化物类型的SE具有优势,包括高机械强度,高温耐受性,对空气和溶剂的稳定性以及广泛的电化学稳定窗口。11然而,基于氧化物的刚性SE不能在没有高温烧结的情况下在颗粒和晶粒之间形成良好的联系。高温烧结将导致CAM和氧化物之间的不希望的元素分化。12–14因此,在大多数类型的阴极中形成直接的阴极/氧化物部分接触是具有挑战性的。不同于氧化物,基于硫化物的SE具有高离子电导率和低/中等温度下的可变形性,希望将电极处理到高,接近理论密度。15–20然而,硫化物易于在CAM(例如Li(Ni X Co Y Mn 1-X-Y)O 2和Li(Ni X Co Y Al 1-X-Y)O 2)的工作势下氧化。21–23即使凸轮颗粒涂有保护层(例如,氧化物),这些保护层部分钝化了表面,例如电子渗透所需的碳添加剂,例如碳纳米诺纤维(CNF),也可能在氧化硫化物电解质中发挥作用。24,25在两种情况下,持续的化学相互作用都破坏了保留的能力和可环性。 26–30凸轮颗粒本身的破裂也可能发生。 每个凸轮都合并24,25在两种情况下,持续的化学相互作用都破坏了保留的能力和可环性。26–30凸轮颗粒本身的破裂也可能发生。每个凸轮都合并从机械上讲,在诱导的插入/提取时,li-ion插入/提取的循环体积变化会导致硫化物SE,CNF和CAM之间的突然或进行性接触损失,从而导致无能力失效和不可逆转的能力损失。31–34为了减轻某些机械效应(以及由于亚最佳电极制备引起的持续孔隙率),细胞可能会在循环测试期间受到超过50 MPa的一层堆栈压力。然而,实践应用需要较低的堆栈压力,例如在电动汽车中,35,36,并且压力过大可能会加速凸轮的损坏并导致LI金属电极的变形。鉴于SSC容量褪色机制的这种复杂性和相互作用,机械降解与化学和电化学侧反应的分离对于阐明发生的各种过程并寻找相应策略至关重要。在这里,我们研究了CAM体积变化和堆叠压力对SSC容量衰减的影响。两种具有相同电压窗口的活性材料,但循环过程中的不同体积变化是Chos的,包括Li 4 Ti 5 O 12(LTO),具有可忽略不计的volume变化和α-NB 2 O 5,其中4%的LI Intercalation in Intercalation 37,38比较了内在的伏特 - UME对已保留能力变化的影响。
该作品保存在航空热力学研究所的研究所图书馆中,供公众阅读,并且该作品被记录在研究所网站和大学图书馆的在线目录中。后者意味着作品的书目数据(标题、作者、出版年份等)在全球范围内永久可见。为此,在工作完成后,除了校样外,我还会向我的导师提交另一份印刷版和一份数字版。我将这些附加版本的所有权转让给斯图加特大学,并授予航空热力学研究所出于研究和教学目的对本作品以及我在本作品范围内产生的工作成果的免费、时间和空间不受限制的简单使用权。如果本院就该作品与第三方订立了使用权协议,则该协议同样适用于该作品范围内产生的工作成果。
杂交通常在灵长类动物中很少见,但发生在相关物种重叠的验证区域。人类的活动,例如韦尔德恩的森林砍伐,栖息地和狩猎的分裂会导致人群的变化,并限制了当地人口之间个人的徒步旅行。这可以增加穿越风险。该研究的主要作者 Tanvir Ahmed说:“肥沃的杂种的存在特别令人震惊,因为它表明这两个濒危物种之间的遗传流可以不可逆地影响其未来的遗传组成”。 基督教罗斯(Christian Roos)是一项研究的主要知识,他强调了研究结果的全球意义:“这不仅仅是当地问题。 当居住空间被摧毁时,动物通常形成混合物类别,它Tanvir Ahmed说:“肥沃的杂种的存在特别令人震惊,因为它表明这两个濒危物种之间的遗传流可以不可逆地影响其未来的遗传组成”。基督教罗斯(Christian Roos)是一项研究的主要知识,他强调了研究结果的全球意义:“这不仅仅是当地问题。当居住空间被摧毁时,动物通常形成混合物类别,它
众所周知,纳米流体在其热和转移特性方面与传统传热液显着不同。CO 2传输特性的两个,其导热率和粘度对于改善油的检索方法和工业制冷至关重要。通过将分子模型与各种机器学习算法相结合,本研究预测了氧化铁CO 2纳米流体的传导特征。可以通过应用机器学习方法,例如决策树,k-neareast邻居和线性回归来评估这些传输参数估计值的准确性。预测这些转移质量需要知道纳米颗粒体积的大小,比例和温度的比例。为了确定特征,分子动力学模拟是使用大尺度原子进行的。建立了一个间和vari内部功能的皮尔逊相关性,以确认输入变量依赖于M和导热率。最终使用确定的统计系数确认了结果。对于各种温度范围,体积分数和纳米颗粒尺寸,该研究发现,决策树模型是预测纳米流体传输参数的最佳方法。它的成功率为99%。关键词:导热率,粘度,机器学习,纳米流体,
摘要。在试飞期间,原型机载数字全息仪器 HOLODEC(云全息探测器)获取全息数据,对其进行数字重建,以获得冰粒的尺寸(等效直径在 23 至 1000 µ m 范围内)、三维位置和二维图像,然后使用自动算法计算冰粒尺寸分布和数量密度,几乎无需用户干预。全息方法具有样本体积大小明确且不受颗粒尺寸或空速影响的优点,并提供了一种检测破碎颗粒的独特方法。全息方法还允许将体积采样率提高到超过原型 HOLODEC 仪器的采样率,而后者仅受相机技术的限制。在云的混合相区域中获取的 HOLODEC 尺寸分布与试飞期间飞机上 PMS FSSP 探测器的尺寸分布非常吻合。利用沿光轴的深度位置检测破碎粒子的保守算法可从数据集中消除明显的冰粒破碎事件。在这种特殊情况下,与所有粒子的尺寸分布相比,当量直径为 15 至 70 µ m 的粒子的非破碎粒子的尺寸分布减少了大约两倍。
目的:回顾性研究治疗前计算机断层扫描(CT)测量的细胞外体积分数(ECV)对腹部神经母细胞瘤原发灶对术前化疗反应的影响。方法:回顾性纳入75例腹部神经母细胞瘤患者。治疗前在平扫和平衡期CT图像上确定原发灶和主动脉的感兴趣区域,并测量其平均CT值。根据患者血细胞比容和平均CT值计算ECV。检查ECV与原发灶体积减少之间的相关性。生成受试者工作特征曲线以评估ECV对原发灶非常好的部分反应的预测性能。结果:原发病灶体积缩小与 ECV 呈负相关(r = -0.351,p = 0.002),部分反应极好的原发病灶 ECV 较低(p < 0.001)。ECV 预测原发病灶部分反应极好的曲线下面积为 0.742(p < 0.001),95% 置信区间为 0.628 至 0.836。最佳截断值为 0.28,灵敏度和特异性分别为 62.07% 和 84.78%。结论:CT 图像上治疗前 ECV 的测量与腹部神经母细胞瘤原发病灶对术前化疗的反应具有显著相关性。
摘要。深脑刺激(DBS)是一种用于治疗运动障碍的既定疗法,并且显示出有望治疗多种其他神经系统疾病的结果。,对DBS的作用机理或刺激造成的脑组织的体积知之甚少。我们开发了使用解剖学和扩散张量MRI(DTI)数据来预测DBS激活的组织(VTA)的方法。我们将成像数据与大脑的详细有限元模型共同注册,并刺激电极以解剖和电气准确地预测刺激的扩散。模型的一个关键组成部分是DTI张量字段,用于表示三维各向异性和不均匀的组织电导率。使用该系统,我们能够融合结构和功能信息,以研究用于治疗帕金森氏病(PD)的丘脑下核的相关临床概率:DB。我们的结果表明,与同质性的各向同性组织体积相比,在我们的模型中包含张量范围会导致VTA的大小和形状的显着差异。这些差异的宏观与刺激电压成正比。我们的模型预测是通过比较预测的活化的扩散与观察到的PD患者眼动神经刺激的影响的传播来验证的。反过来,脑的3D组织电性能在调节DBS产生的神经激活的扩散中起着重要作用。
2019 年是计量学的重要一年。国际单位制于当年 5 月 20 日世界计量日进行了修订 [1]。2020 年会带来什么?在本文中,我们讨论了 2020 年值得关注的五项有希望的进展。首先,我们描述使用电磁波测量体积和气体压力。这些测量依赖于真空中光速的固定值 c 0 。然后我们转向普朗克常数 h 。可以从 h 获得质量和力的 SI 可追溯测量值。自从定义从千克国际原型的质量变为普朗克常数的值以来,质量计量学正在取得有趣的发展。将基本电荷 e 添加到 h 中,可以通过量子霍尔效应进行电阻和阻抗测量。自 2004 年发现石墨烯以来,这一直是一个非常有趣的领域。最后一节解释了如何使用电阻器上的噪声来测量热力学温度。正如将要展示的,温度可以与玻尔兹曼常数 k B 和普朗克常数的商相关联。虽然很难与去年计量学的兴奋相媲美,但我们相信,2020 年基础计量学将迎来有趣而令人兴奋的发展。