尽管越来越多的证据表明年龄较大的儿童和青少年的听觉感知尚未成熟(Buss 等人,1999 年;Hartley 等人,2000 年;Johnson,2000 年;Wightman 和 Kistler,2005 年;Bishop 和 Dawes,2008 年;Lutfi 等人,2010 年;Wightman 等人,2010 年;Banai 等人,2011 年;Ross 等人,2011 年;Buss 等人,2017 年;Huyck 和 Wright,2017 年;Huyck,2018 年;Huyck 和 Rosen,2018 年),但大多数发展研究仅评估 9 至 12 岁的儿童,并未涵盖从青春期早期到成年的整个年龄范围。因此,人们对听力和聆听能力长期成熟的过程知之甚少。通常,当年龄较大的儿童或青少年在感知任务上的表现比成年人更差时,人们会争论这种差异是由于感官因素还是“非感官”因素造成的(Bishop 和 Dawes,2008 年;Wightman 等人,2010b 年;Halliday 等人,2012 年;Huyck 和 Wright,2013 年、2017 年)。该研究将使用心理和生理测量相结合的方式,评估频谱和时间(感官)编码以及各种认知(“非感官”子集)功能对青少年时期未成熟的听觉感知的相对贡献。
摘要 2019 年上半年,越南经历了太阳能光伏 (PV) 安装热潮,装机容量增至 4,450 兆瓦。这使越南超过泰国,成为东南亚装机容量最大的国家。本文探讨了越南太阳能热潮的根本驱动因素、进一步应用太阳能的障碍以及下一阶段太阳能应用的合适策略。研究人员对来自政府机构、国际组织、非政府组织、大学、研究机构和行业的专家进行了 46 次半结构化访谈。研究发现,对新项目慷慨的上网电价 (FIT) 为 93.5 美元/兆瓦时,加上免税等支持政策,是越南太阳能光伏热潮的主要直接驱动因素。根本驱动因素包括政府希望提高能源自给自足水平以及公众对当地环境质量的要求。输电网容量有限和行政程序复杂是主要障碍之一。展望未来,越南具有继续扩大太阳能光伏发电规模的巨大潜力,而市场机制将在这一过程中发挥重要作用。越南的案例与更广泛的能源转型讨论相关。
神经动力学可以反映内在动力学或动态输入,例如感觉输入或来自其他大脑区域的输入。为了避免将时间结构化的输入误解为内在动力学,神经活动的动力学模型应该考虑测量的输入。然而,在神经 - 行为数据的联合动力学建模中,纳入测量的输入仍然难以实现,这对于研究行为的神经计算很重要。我们首先展示了在考虑行为但不考虑输入或考虑输入但不考虑行为的情况下训练神经活动的动力学模型可能导致误解。然后,我们开发了一种线性动力学模型的分析学习方法,该方法同时考虑神经活动、行为和测量的输入。该方法能够优先学习内在的行为相关神经动力学,并将它们与其他内在动力学和测量的输入动力学分离。在具有固定内在动力学的模拟大脑执行不同任务的数据中,该方法无论任务如何都能正确地找到相同的内在动力学,而其他方法可能会受到任务的影响。在来自三名受试者的神经数据集中,他们使用任务指令感官输入执行两项不同的运动任务,该方法揭示了其他方法所遗漏的低维内在神经动力学,这些动力学更能预测行为和/或神经活动。该方法还独特地发现,内在行为相关的神经动力学在不同的受试者和任务中大致相似,而整体神经动力学则不同。这些输入驱动的神经行为数据动力学模型可以揭示可能被遗漏的内在动力学。
哪些心理因素推动了人们对人工智能 (AI) 工具的态度?当人工智能系统有益时,如何克服对它们的抵制?在这里,我们首先将主要的抵制来源分为五大类:不透明、冷漠、僵化、自主和群体成员。我们将这些障碍与认知的基本方面联系起来,然后介绍实证研究,提供相关或因果证据,说明障碍如何影响对人工智能工具的态度。其次,我们将五个障碍分为与人工智能相关的因素和与用户相关的因素,这对于制定采用有益人工智能工具的干预措施具有实际意义。第三,我们强调了这些善意干预措施可能带来的风险。第四,我们解释当前的观点如何适用于各种利益相关者,包括如何处理已知风险的干预措施,并指出未来工作的未决问题。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2022年1月10日。 https://doi.org/10.1101/2021.03.16.435524 doi:biorxiv preprint
当代抗癌药物的发现和开发基于这样的模型:投资基础生物医学科学将获得可转化为新疗法的见解。在美国,基础研究主要由国立卫生研究院 (NIH) 资助,1 该研究院将其研究预算的一半分配给基础科学,2 慈善机构、学术界或工业界贡献的资金较少。1 基础科学的正式定义为“旨在更全面地了解或理解现象和可观察事实的基本方面,而不考虑特定过程或产品的应用的系统研究”。3 然而,科学往往以应用为导向,4 NIH 对基础研究的大部分资助来自具有特定健康使命的研究所。2,4 NIH 对基础科学的资助与新癌症疗法的出现之间有直接联系吗?新型抗癌药物的数量已从 1980 年代美国食品药品管理局 (FDA) 批准的所有药物的 4% 增长至 2010 年至 2018 年间的 27%。5 有证据表明,这种增长是由基础科学的进步推动的,6 以及癌症免疫学、癌症遗传学和细胞信号传导等领域基础研究的成熟,这些研究大多起源于 1970 年代和 1980 年代。7
摘要:目的:本综述旨在概述健康和肿瘤组织对辐射的反应,从而概述其放射性敏感性。了解单个放射敏感性的生物学机制是建立旨在预测治疗反应的测定方法的初始途径,对于在RT程序中实现个性化医学至关重要。从这个意义上讲,在临床环境中研究放射敏性的兴趣是确定1)对IR治疗产生不良影响的个体风险(临床或正常组织放射敏感性)和2)可能对IR的治疗益处(肿瘤放射线敏感性)。作者对影响正常组织和癌组织对电离辐射(IR)治疗的反应的辐射生物学和细胞机制进行了广泛的评论。该评论主要关注于2000年至2023年3月发表的材料,同时纳入了精选的旧文章以丰富讨论。为了从PubMed,Scienceirect,Google Scholar和Cochrane等流行的电子数据库中收集这些文章,作者采用了一种搜索策略,该策略采用了布尔值“,”和“或”逻辑。The different combinations of keywords searched included the following terms: “radiosensitivity”, “cellular”, “radiation sensitivity”, “radioresistance”, “ionizing radiation”, “radiotherapy”, “biological effects”, “tumor”, “normal tissues”, “cellular mechanisms”, “oxidative stress”, “DNA repair”, “immune response”, “cell death”, “radio induced效果”。结论:放射疗法(RT)是肿瘤学的主要治疗方式之一,以及手术,化学疗法和免疫疗法。rt向肿瘤组织提供精确和舒适的剂量,诱导细胞死亡。然而,根据所使用的治疗类型(即外部RT,放射外科手术,近距离放射治疗等)以及肿瘤类型与亚型之间的内在异质性,对IR暴露的个人反应因素而异。此外,控制对DNA损伤,氧化应激,细胞周期控制,细胞死亡和免疫反应的细胞反应的基因中的变体将导致一系列放射线敏感性。了解辐射如何在细胞水平上影响正常细胞和肿瘤细胞,这对于开发有效的治疗方案至关重要,以说明个体之间的生物学差异。尽管许多人对放射治疗对副作用和肿瘤反应的敏感性中等,但敏感性可能有所不同。因此,获得此知识对于获得最佳临床结果至关重要。
项目描述:母亲对后代表型的影响是生物变异的最普遍,最重要的来源之一。从植物到脊椎动物,女性通过将营养素,激素和抗体转移到生长的胚胎中,影响后代特征。这些资源超出了胚胎生长和成熟的必要要求,它们还提供了环境条件的预览,并且通常会引起后代表型的适应性变化,因为传递的资源的数量和种类反映了女性当前的经验。然而,自适应母体效应的演变通常显着,因为女性通常会改变后代表型和行为以完全匹配当前的生态条件。然而,随着发现压力诱导的母体编程对人类和许多实验室模型物种的后代表型产生终生影响,这表明自适应母体效应不需要在每个物种中逐渐发展,而是可以利用保守的压力诱导的途径来诱导特定物种特异性的压力适应性适应性的条件。胁迫的母体信号通过DNA甲基化和其他表观遗传修饰改变了基因表达,最终影响脑和肝脏等代谢器官中糖皮质激素受体的分布。早期发育条件通常也会对对昂贵的器官,尤其是大脑的投资产生永久影响。这些影响可能是理解自适应母体效应如何发展的关键,还可以洞悉不灵活的行为特征(例如动物人格)的演变。我们的实验室正在通过比较卵子发生过程中孕产妇应力的暴露如何影响脑形态,下丘脑 - 垂体 - 肾上腺轴编程和行为,斑马斑马雀科的行为。
青春期抽象的大麻消耗是一个特别关注的领域,这是由于该药物的社会和政治看法的变化,并提出了科学,医学和经济挑战。主要的社会和经济利益继续朝着大麻合法化以及制药发展迈进。因此,对整个人群中法律和非法大麻使用的转移看法改变了对产品潜在危险的集体评估。因此,大麻合法化的浪潮承担了新的责任,以教育公众对娱乐和医用大麻的潜在风险和已知危险。是长期认知和心理后果的风险,尤其是在使用早期使用后,具有高功能和/或合成大麻的复合,以及对药物的大量使用。这些认知和精神病后果的基础是突触功能发展的持久畸变,通常是表观遗传变化的继发性。其他因素,例如遗传风险和环境影响或在发育过程中的非药物损害,也是青少年大麻使用后这些长期功能改变的深刻贡献。临床前研究表明,在脆弱能力的特定窗口(例如,青春期)中暴露于大麻素的情况下,通过持久地改变了deNITIC结构和突触功能来影响神经发育过程和行为,包括通常由内源性大麻素和神经元通道介导的神经发育过程。
DNA损害剂和内源性DNA损伤不断损害基因组完整性。在遗传毒性应力条件下,DNA损伤反应(DDR)机制对于修复病变和防止DNA基本结构中的突变至关重要。不同的修复途径与此类病变的分辨率有关。例如,非同源DNA末端连接和同源重组途径是真核细胞维持基因组完整性的中心细胞机制。但是,这些途径中的缺陷通常与神经系统疾病有关,表明DDR在正常脑发育中的关键作用。此外,与其他组织相比,大脑是受DNA受损剂的影响最敏感的器官。据信病变的积累会诱导细胞死亡,减少神经茎和祖细胞的增殖和过早分化,并减少脑大小(小头畸形)。小头畸形主要是由基因突变引起的,尤其是编码涉及中心体和DNA修复途径的蛋白质的基因。但是,也可以通过暴露于电离辐射和宫内感染(如寨卡病毒)来诱导它。本综述解释了哺乳动物的皮质发育和主要的DNA修复途径,在受损时可能会导致小头畸形。接下来,我们讨论导致DNA损伤和p53过度激活的机理和暴露。