利用细菌代谢物的免疫调节潜力为治疗各种免疫相关疾病的令人兴奋的可能性。但是,将这种潜力变成现实带来了重大挑战。本综述调查了这些挑战,重点是发现,生产,表征,稳定,配方,安全性和个人可变性限制。强调了许多代谢产物的有限生物利用度以及潜在的改进以及脱靶效应的潜力和精确靶向的重要性。此外,研究了肠道细菌代谢物与微生物组之间的复杂相互作用,强调了个性化方法的重要性。我们通过讨论宏基因组学,代谢组学,合成生物学和靶向递送系统的有希望的进步来结束,这对克服这些局限性并为细菌代谢物作为有效免疫调节剂的临床翻译铺平了希望。
多细胞生物生活在包含各种营养和各种微生物群落的环境中。一方面,生物体的免疫反应可以保护外源微生物的侵入。另一方面,生物体的合成代谢和分解代谢的动态协调是生长和繁殖的必要因素。由于产生免疫反应是一种能量密集型过程,因此免疫细胞的激活伴随着代谢转化,使ATP和新生物分子的快速产生。在昆虫中,免疫和代谢的协调是应对环境挑战并确保正常生长,发育和繁殖的基础。在通过致病性微生物激活昆虫免疫组织期间,不仅可以增强有机资源的利用,而且活化的免疫细胞也可以通过产生信号来篡夺非免疫组织的营养。同时,昆虫的体内也有共生细菌,这可以通过免疫 - 代谢调节影响昆虫的生理。本文从昆虫组织的角度(例如脂肪体,肠道和血细胞)回顾了昆虫免疫代谢调节的研究进度。在这里阐述了微生物(致病细菌/非病原细菌)和寄生虫对免疫代谢的影响,这为揭示昆虫和哺乳动物的免疫代谢机制提供了指导。这项工作还提供了见解,以利用免疫代谢来制定害虫控制策略。
涉及先天免疫细胞的炎症失调,特别是单核细胞/巨噬细胞谱系,是导致Duchenne肌肉营养不良症(DMD)发病机理的关键因素。受过训练的免疫力是一种抗感染的进化古老的保护机制,其中表观遗传和代谢改变赋予了先天免疫细胞对各种刺激的非特殊性过度反应性。在DMD动物模型(MDX小鼠)中的最新工作表明,巨噬细胞表现出训练有素的免疫力的基本特征,包括存在先天免疫系统“记忆”。通过骨髓移植对训练的表型对健康的非疾病小鼠的表观遗传变化和耐用的可传播反映了后者。机械上,建议通过受损的肌肉受损的因素在骨髓水平上诱导了4个调节的,带有样本的先天免疫的记忆样能力,从而夸大了促进性和抗流量的基因的上调。在这里,我们提出了一个概念框架,以参与训练有素的免疫力参与DMD发病机理及其作为新的治疗靶点的潜力。
fi g u r e 1 LICL诱导的牙周再生与M2极化有关。来自μCT,Azan染色和H&E染色的代表性图像表明,与PBS-隔间管理对照相比,LICL给药可显着诱导牙周组织修复。免疫组织化学染色证明了LICL给药诱导的Wnt/β-催化性信号的成功激活,这进一步导致了巨噬细胞(CD68 +细胞)的浸润,其中主要成分是精氨酸酶 + M2表型的精氨酸酶 + M2表型和INOS + M1表型显然抑制了1和2周的组合。AB,牙槽骨; D,牙本质; PDL,牙周韧带AB,牙槽骨; D,牙本质; PDL,牙周韧带
理由:干扰素基因(STING)激活肿瘤中的刺激剂不可避免地增强了吲哚胺2,3-二氧酶(IDO)的活性。然而,IDO会将色氨酸(TRP)转换为kynurenine(Kyn),这可以抑制对TRP敏感的T细胞的功能活性并诱导免疫抑制作用。很少探索用于刺激性激动剂和IDO抑制剂组合的有效纳米药物。方法:将二嵌段聚合物多生产与IDO抑制剂1-甲基丁字传(1-MT)合成,该二烷基键(1-MT)由硫代键和光敏剂5,10,15,15,20-四磷酸苯基孢子蛋白(TPP)以及氢孢子骨(TPP)以及氢孢子骨(4-METH)的替代(4-METH)替代(4-METH)(ER) - METHERMETERMESTRIMSILIM级别(ER)磺酰胺在亲水块中。在水溶液中自组装后,可以以高载荷效率形成胶束加载刺激性激动剂SR-717(SR@et-PMT)。细胞内在化后,胶束可以靶向ER。在暴露于650 nm的光照射后,可以生成活性氧(ROS)以打破硫代键并将胶束解离以释放1-MT和Sting Agonist。伴随着光动力疗法(PDT),同时实现了STING激活和IDO抑制作用。结果:体外观察揭示了PDT效应,ER靶向和光活化的药物释放。体内动物模型的结果表明,可光活化的免疫调节剂多生产胶束表现出极好的肿瘤积累和有效的免疫激活能力可抑制实体瘤。PDT效应,STING激活和IDO抑制作用协同激活体内抗肿瘤免疫。最后,由于有效的免疫治疗疗效,SR@et-PMT可以达到88%的实体瘤抑制率。结论:可将光活化的免疫调节剂多塑料成功准备好同时提供刺痛激动剂和IDO抑制剂,这代表了一种有希望的纳米医学,用于协同抗体免疫的时空激活。
最初发表于:锡金,莫里斯(Maurits a); Stroeks,Sophie L V M;费德里卡(Federica)Marelli-Berg; Heymans,Stephane R B;卢德维格(Ludewig),伯克哈德(Burkhard); Verdonschot,Job A J(2023)。心肌纤维化的免疫调节。JACC:转化科学基础,8(11):1477-1488。 doi:https://doi.org/10.1016/j.jacbts.2023.03.015JACC:转化科学基础,8(11):1477-1488。doi:https://doi.org/10.1016/j.jacbts.2023.03.015
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年3月1日发布。 https://doi.org/10.1101/2025.02.25.640019 doi:Biorxiv Preprint
摘要目的:通过检查白素6(IL-6)水平,总白细胞计数(TLC)和偶然的白细胞计数,评估褪黑激素对免疫抑制的男性Wistar大鼠的免疫效果。研究设计:实验研究。研究的地点和持续时间:2023年6月至10月10日,CMH Lahore医学院动物实验室。方法论:重达180克至200g的五十只雄性Wistar大鼠在这项研究中包括10个大鼠,其中五组是环磷酰胺(CP),CP +褪黑激素,CP + Immunomomomomomomomomomomomomomomomomomomomomomomomomomomomomomomomomomomomomomomoyomodulator,Melatonin-Folly和Control。除对照组外,将计算出的CP内积为30天(从13/06/23到13/07/23)。之后,将实验组给予褪黑激素CP +褪黑激素7天(从14/07/23到20/07/23)。CP +免疫调节组,以比较免疫调节效应。从所有5组中抽取血液样本。IL-6。评估的其他参数是TLC和绝对不同的白细胞计数。结果:与免疫抑制的CP组相比,褪黑激素的IL-6水平显着升高(P = 0.042)以及TLC水平(P <0.001)。褪黑激素在免疫抑制中具有IL-6水平的上调(P = 0.506),这并非有效。与已知的免疫调节剂相比,褪黑激素显着增加了TLC,中性粒细胞,淋巴细胞,单核细胞和嗜酸性粒细胞计数。结论:褪黑激素作为补充剂可能在激活免疫抑郁状态的多种免疫反应过程中起作用。还确定,它允许从免疫抑制状态快速恢复细胞成分。
摘要:免疫系统通常提供防御入侵的致病微生物和任何其他颗粒物污染物的防御。尽管如此,最近有报道说,由于其独特的物理化学特征,纳米材料可以逃避免疫系统并调节免疫学反应。因此,基于纳米材料的免疫成分激活,即中性粒细胞,巨噬细胞和其他效应细胞,可能会诱发炎症并改变免疫反应。在这里,必须区分纳米材料触发的急性和慢性调节以确定人类健康的可能风险。纳米材料的大小,形状,组成,表面电荷和变形性是控制其免疫细胞摄取的因素以及由此产生的免疫反应。在纳米材料表面吸附的分子的外围电晕也会影响其免疫学作用。在这里,我们回顾了靶向免疫调节的当前纳米工程趋势,重点是纳米材料的设计,安全性和潜在毒性。首先,我们描述了触发免疫反应的工程纳米材料的特征。然后,争论了纳米工程颗粒的生物相容性和免疫毒性,因为这些因素会影响应用。最后,讨论了表面修饰,协同方法和仿生学的未来纳米材料发展。关键词:表面工程,免疫调节,生物相容性,免疫毒性,纳米医学