T细胞受体(TCR)及其同源表位之间结合的准确预测是理解适应性免疫反应和发展免疫疗法的关键。当前方法面临两个显着的局限性:全面的高质量数据的短缺以及通过选择监督学习方法中常用的负面培训数据引起的偏见。我们提出了一种基于变压器的方法,用于相互作用的肽和T细胞受体(Tulip)的方法,该模型通过利用不完整的数据和无监督的学习以及使用语言模型的变压器体系结构来解决这两个限制。我们的模型具有灵活性,并整合了所有可能的数据源,无论其质量或完整性如何。我们证明了先前有监督方法中使用的抽样程序引入的偏差的存在,强调了不受监督的方法的需求。郁金香识别表位的特定TCR结合,在看不见的表位上表现良好。我们的模型优于最先进的模型,并为开发更准确的TCR表位识别模型提供了有希望的方向。
最近,在药物发现中积极研究了使用深度学习的分子产生。在该领域,变压器和VAE被广泛用作强大的模型,但由于结构和性能不匹配,它们很少被用作组合。本研究提出了一个模型,该模型通过处理多种分子的结构和参数优化结合了这两个模型。所提出的模型显示出与现有模型生成分子相当的性能,并且在具有看不见的结构的产生分子时表现出了较高的性能。该VAE模型的另一个优点是它从潜在的表示中产生分子,因此可以很容易地通过它预测或条件,实际上,我们证明该模型的潜在表示成功地预测了分子特性。消融研究表明,VAE比其他生成模型(如语言模型)在产生新分子方面具有优势。还表明,潜在表示可以缩短为〜32维变量而不会丢失重建,这表明比现有的分子描述符或模型更小。这项研究有望提供一个虚拟化学文库,其中包含多种化合物用于虚拟筛选并实现有效筛选。
摘要越来越多的网络模拟器为探索和应用最先进的算法开放了机会,以了解和衡量众多领域此类技术的能力。在这方面,最近发布的打哈欠泰坦是网络网络场景的简单化但不太详细的一个例子,可以通过强化学习算法来训练代理,并衡量其试图停止感染的有效性。在本文中,我们探讨了不同的强化学习算法如何导致不同示例和现实网络中各种代理的培训。我们评估了如何在一组网络中部署此类代理,尤其关注代理在探索具有复杂起始状态的网络,连接节点和不同级别挑战级别的路线数量的增加,旨在评估现实网络中从未见过的部署性能。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年10月12日发布。 https://doi.org/10.1101/2023.08.21.554147 doi:Biorxiv Preprint
人体是数万亿微生物的家园,统称为人类微生物群。这个细菌,病毒,真菌和其他微生物的社区位于肠道,皮肤,口腔和其他壁ni。近年来的研究阐明了这些微生物在我们的健康中的关键作用。肠道菌群有助于消化,合成必需的维生素,并在免疫系统中起重要作用。营养不良是肠道微生物群中的不平衡,与各种健康状况有关,包括肥胖,自身免疫性疾病和情绪障碍。皮肤微生物有助于预防病原体并保持皮肤健康。失衡会导致皮肤疾病。口腔微生物群会影响口腔健康,并且干扰可能导致牙齿疾病。阴道菌群在女性健康中起着至关重要的作用,影响了生育能力和对感染的易感性。了解这些微生物群落已经为个性化医学开辟了新的途径,因为正在探索益生菌和粪便菌群移植等干预措施以治疗一系列医疗状况[4]。