2023 年 9 月 5 日 — • 复杂社会,有战争和俘虏。• 晚年发病,早年……魅力十足、聪明自信。• 寻求与看不见的力量的联系。
摘要:需要长时间需要持续关注的任务是几十年来认知疲劳研究的焦点,这些任务包括空中运输控制,手表保持,行李检查等。最近对精神疲劳生理标志物的研究表明,存在标记,这些标记范围延伸到所有个人和所有类型的警惕任务中。这表明可以构建一个脑电图模型,该模型检测到这些标记物以及随后的任何任务(即任务生成模型)和任何人(即跨派对模型)的随后警惕性降低。到目前为止,尚未构建或测试任务生成的脑电图跨参与模型。在这项研究中,我们探讨了任务生成脑电图跨参与模型的创建和应用,以检测看不见的任务和看不见的个体的警惕性降低。我们利用三种不同的模型来研究这种能力:多层感知神经网络(MLPNN),采用了从传统的EEG频率频段提取的光谱特征,临时卷积网络(TCN),以及TCN自动设备(TCN-ae),以及这些两个TCN模型,以及使用这些eeg eeg at eeg at i.值。MLPNN和TCN模型都达到了比随机机会更高的精度(50%),而MLPNN的表现最佳,其7倍CV平衡精度为64%(95%CI:0.59,0.69),并且验证精度比14名参与者中9个参与者中的9个比随机机会大。这个发现的示例表明,即使是从看不见的个人和看不见的任务中脑电图中,也可以使用脑电图对警惕性降低进行分类。
随着连接和自动驾驶汽车的增殖,控制器区域网络(CAN)总线由于其速度和效率而成为车载网络的主要通信标准。但是,CAN总线缺乏基本的安全措施,例如身份验证和加密,使其非常容易受到网络攻击的影响。为了确保车辆安全性,入侵检测系统(IDS)必须检测到可见的攻击,并为新的,看不见的攻击提供强大的防御,同时保持轻量级的实用部署。以前的工作仅依赖于CAN ID功能,或者使用了手动功能提取的传统机器学习(ML)方法。这些方法忽略了其他可剥削的功能,这使得适应新的看不见的攻击变体和损害安全性。本文介绍了一种尖端,新颖,轻巧,车载,IDS玻璃,深度学习(DL)算法,以解决这些局限性。所提出的ID采用多阶段方法:在第一个阶段的人工神经网络(ANN)来检测可见的攻击,以及在第二阶段进行长期的短期记忆(LSTM)自动编码器,以检测新的,看不见的攻击。要了解和分析各种驾驶行为,使用最新的攻击模式更新模型,并保留数据隐私,我们提出了一个理论框架,以在层次结构联合学习(H-FL)环境中部署我们的ID。实验结果表明,我们的IDS的F1得分超过了0.99,对于看到的攻击,新型攻击的检测率为99.99%,超过0.95。这使我们的模型可与可见和看不见的攻击进行稳健。此外,误报率(FAR)在0.016%的情况下极低,最小化了错误警报。尽管使用了以其在识别复杂和零日攻击方面的有效性而闻名的DL算法,但IDS仍然轻量级,确保了其对现实世界部署的可行性。
目的:对心血管疾病的治疗需要对导丝和导管进行复杂而挑战性的导航。这通常会导致长期干预措施,在此过程中,患者和临床医生暴露于X射线辐射。深度强化学习方法在学习此任务方面表现出了希望,并且可能是在机器人干预过程中自动导管导航的关键。然而,现有的培训方法显示出有限的能力,可以概括看不见的血管解剖结构,每次几何变化时都需要重新训练。方法:在本文中,我们为三维自主内血管内导航提出了零射击学习策略。使用一组非常小的分支模式训练集,我们的增强学习算法能够学习一个控制,然后可以将其应用于不看到的无需再培训的情况下。结果:我们在4种不同的血管系统上演示了我们的方法,在达到这些解剖学的随机靶标时,平均成功率为95%。我们的策略在计算上也有效,可以在2小时内对控制器进行训练。结论:我们的培训方法证明了其具有不同特征的不观察几何形状的能力,这要归功于几乎形状不变的观察空间。关键字 - 强化学习,控制,血管内导航,机器人技术
文本对视频模型在机器人决策中表现出了实质性的潜力,从而使未来的现实计划以及准确的环境模拟实现了现实计划的想象。但是,此类模型中的一个主要问题是一般化 - 模型仅限于综合视频,但受到与培训时间相似的语言指令约束的视频。这在决策中严重限制,我们寻求一个强大的世界模型来综合对象和行动的不显示的计划,以便在新环境中解决以前看不见的任务。为了解决此问题,我们介绍了Robodreamer,这是一种通过分配视频生成来学习组成世界模型的创新方法。我们利用语言的自然组成性将说明解析为一组低级原始词,我们调节一组模型以生成视频。我们通过允许我们制定新的自然语言教学作为先前看到的组成部分的组合来说明这种分解如何自然地实现组成的重新化。我们进一步展示了这样的分解如何使我们能够添加附加的多模式目标,从而使我们能够指定一个我们希望同时给定自然语言指令和目标图像生成的视频。我们的AP-PRACH可以成功地合成RT-X中看不见的目标的视频计划,在仿真中成功执行机器人,并且在视频生成方面实质上优于单片基线方法。
● 泛化:对未知数据和新类型虚假信息的错误率更高 ● 对新数据的鲁棒性:特定于平台的格式、API、元数据 ● 多模式和跨模式检测(例如脱离上下文) ● 高水平的透明度,包括可解释性和可解释性
9. 看不见的段落 印地语 Vasant - 1)Jahan Pahaiya Hai 2)Sudam Charit 3)Akbi Lot 语法 - 心,心形容词,介词,连词,嘶嘶声形容词,心符号,创作作品 - 段落,非正式信函 数学 第 8 章:代数表达式和恒等式 第 10 章:指数和幂 科学 第 2 章(微生物:朋友和敌人) 第 7 章(达到青春期) 第 10 章(声音) 社会科学