摘要 - 对网络入侵检测系统的评估需要足够数量的混合网络流量,即由恶意和合法流动组成。特别是获得现实的合法流量很难。合成网络流量是响应不足或不完整的现实数据集的工具之一。在本文中,我们仅着重于合成产生高质量的合法流量,而我们不会深入研究恶意交通。对于这项特定任务,最近的贡献利用了高级机器学习驱动的方法,特别是通过生成对抗网络(GAN)。但是,对GAN生成的数据的评估通常会忽略关键属性,例如协议依从性。我们的研究通过提出一组全面的指标来解决差距,以评估合成合法网络流量的质量。为了说明这些指标的价值,我们通过简单但有效的概率生成模型Bayesian Network(BN)将面向网络的gans进行了经验比较。根据我们提出的评估指标,基于BN的网络流量产生的表现优于基于ART GAN的对手。在我们的研究中,BN产生了更现实和有用的合成良性流量,并同时最大程度地减少了计算成本。
Phanstiel是细胞生物学和生理学系的副教授,然后利用实验室在基因组学和生物信息学方面的专业知识来生成基因表达数据,并在计算上识别与骨关节炎风险相关的基因。Brian Diekman博士,UNC-NC州生物医学工程联合系的副教授,基因编辑专家,主持了后续研究,以确定因果基因在骨关节炎中的作用。Brian Diekman博士,UNC-NC州生物医学工程联合系的副教授,基因编辑专家,主持了后续研究,以确定因果基因在骨关节炎中的作用。
关于CardLab CardLab是高级生物识别智能卡解决方案和令牌身份平台的领先提供商,专门针对物理和逻辑访问的安全身份验证。与丹麦的总部和研发和泰国的制造设施一起,CardLab开发了高性能的,用户友好的智能卡产品,可整合尖端的生物识别和加密技术,以及高度安全的后端身材验证系统,以实现身份标记验证。我们的解决方案旨在满足全球企业,政府和金融机构不断发展的安全需求。有关更多信息,请访问www.cardlab.com或电子邮件:info@cardlab.com。
最初,tRNA仅被认为是氨基酸的转运蛋白。通过发现抑制器tRNA发生了变化。1965年,Engelhardt等人。 实验表明,抑制器tRNA可以识别停止密码子和插入氨基酸,从而绕过翻译终止过程。 随后的研究进一步揭示了真核生物中抑制器tRNA的读取机理,并在基因治疗中显示了其潜力。1965年,Engelhardt等人。实验表明,抑制器tRNA可以识别停止密码子和插入氨基酸,从而绕过翻译终止过程。随后的研究进一步揭示了真核生物中抑制器tRNA的读取机理,并在基因治疗中显示了其潜力。
Fermentalg是微藻研究和生物工业剥削的专家,旨在提供可持续的解决方案和创新产品,从而有助于发展健康,自然和高性能产品。我们的业务:可持续解决方案的开发,生产和营销以及来自微藻的活性成分,用于营养,健康和环境。营养脂质,替代蛋白质,天然食品着色和创新的环境解决方案构成了我们公司当前和未来的产品。发酵股股票在巴黎的EuroNext增长(FR0011271600-藻类)上列出,并且符合PEA -PME的资格。它已从Elthifinance ESG评级获得了示例性评级(90/100),这是一家专门从事欧洲市场上列出的中小企业ESG表现的评级机构,有利于社会负责的投资(SRI)。
要返回直观的Artmarket®AI算法,他们可以帮助美术馆和拍卖行设定基于各种因素,例如需求,稀有性,当然还有有关艺术家的臭名昭著的艺术品的最佳价格。简而言之,直觉的Artmarket®人工智能通过改善信息访问,个性化买家体验,与伪造和开辟新的创造性观点,为革新艺术市场提供了巨大的潜力。直觉Artmarket®AI专门从事几乎无限的专有内容范围,因此受到IP法律的保护,这使用户免于潜在的版权障碍和禁令。直觉Artmarket®AI因此无需在其他地方查找数据和/或对艺术市场用户非常具体请求的响应。
“我们建立了一个遗传优先级评分,其灵感来自于这样一个认识:多样化的人类遗传数据为药物靶点提供了见解,但缺乏一个将这些不同数据类型整合成一个易于解释的评分的统一策略。因此,我们开发了一个计算评分来优先考虑药物靶点,以增强药物发现,”资深研究作者、伊坎西奈山个性化医学查尔斯布朗夫曼教授 Ron Do 博士说。“值得注意的是,已知几种具有高 GPS 的基因是已获批准药物的靶点,这为新工具提供了验证。”
肠道菌群与人类健康之间的抽象联系在许多研究中得到了支持,例如神经系统疾病的发展。此链接称为“微生物群 - 脑轴”,是新兴研究领域的重点。微生物衍生的代谢产物以及肠道和神经免疫学代谢物在健康和许多疾病中调节该轴。的确,评估这些信号,无论是由微生物代谢产物还是神经免疫介质引起的,都可以显着增加我们对微生物群脑轴的了解。但是,这将需要开发适当的技术和潜在模型。在该领域中,研究源自菌群的诱导信号的方法仍然至关重要。本综述讨论了可用于研究微生物群脑相互作用的方法和技术。我们重点介绍了这些方法的几个备受推测的元素,其中包括基于PubMed的系统评价,在体内和体外模型中广泛使用的含义和视野。在微生物群 - 脑轴研究中的各种动物模型(斑马鱼,小鼠,犬,大鼠,兔子)的应用,其中强调了体外方法的实际例子和研究肠道脑通信的创新方法。特别是我们广泛讨论了“芯片上”设备及其在该领域的应用的潜力。总的来说,这篇评论阐明了最广泛使用的模型和方法,这是指导研究人员的合理选择,用于研究微生物群研究的策略。
背景:在各种成像技术中,提供替代肿瘤射线照相指标,以帮助计划,监测和预测治疗的结果,超声引导的光声成像(US-PAI)是一种基于内源性血液(血红蛋白)和血氧饱和(Sto)的非离子化模式。将US-PAI适应临床领域需要宏观系统配置,以实现足够的深度可视化。方法:在这里,我们提出了一种通过宏观PA图像的频域滤波来获取肿瘤内低血管密度区域(分别为LVD和HVD)的低血管密度区域(分别为LVD和HVD)的方法。在这项工作中,我们评估了胰腺癌不同鼠类异种移植物的各种血管和氧合谱(ASPC-1,MIA PACA-2和BXPC-3)具有不同水平的血管生成潜力,并研究了受体酪氨酸激酶抑制剂(Sunitibibsessssessssessssesss and tamor and tamor and tamor and tamor and tamor and tamor and tumor and tumor and tamor and tumor siltsess and tumor and tam and t tumor and tumor and tumor and t tumor and tumor and t tumor and t tumor and t tumor and₂结果:在这三种肿瘤类型的两种(ASPC-1和MIA PACA-2)中,舒尼替尼的给药导致72小时内血管密度的短暂脱氧和减小。利用VRA,STO 2(∆Sto 2)的区域变化揭示了仅在ASPC-1肿瘤中LVD区域中Sunitinib的优先靶向。我们还确定了在治疗后第8天治疗的Sunitinib处理过的ASPC-1肿瘤中的血管归一化(通过免疫组织化学验证)的存在,在72小时的时间点之后,HVD ∆Sto 2(〜20%)显着增加,表明血管流动和功能改善。与未经处理的肿瘤相比,经过处理的ASPC-1血管表现出的成熟度和功能增加,而这些相同的指标没有显示MIA PACA-2或BXPC-3肿瘤血管归一化的结论性证据。结论:总体而言,VRA作为监测治疗反应的工具,使我们能够识别血管重塑的时间点,突出显示其能够洞悉用于舒尼替尼治疗和其他抗血管生成疗法的肿瘤微环境的能力。
多药理学的概念涉及药物与多个分子靶标的相互作用。它为重新利用已经批准的药物提供了一个独特的机会,以针对涉及人类疾病的关键因素。在此,我们使用了一种硅靶预测算法来研究甲苯达唑的作用机理,甲苯达唑(一种抗固有药物)目前在治疗脑肿瘤方面已重新使用。首先,我们确定了甲苯二唑在体外降低了胶质母细胞瘤细胞的活力(IC 50值范围从288 n m至2.1 µm)。与正常的脑组织相比,我们在硅藻甲甲苯唑的21个推定的分子靶标公开了21个推定的分子靶标,其中包括12种显着上调的蛋白质(倍数变化> 1.5; p <0.0001)。量化实验是对参与CER生物学的三个主要激酶进行的:ABL1,MAPK1/ERK2和MAPK14/P38 a。mebendazole可以抑制这些激酶在剂量依赖性的体外的活性,对MAPK14的效力很高(IC 50 = 104 46 n m)。其与MAPK14的直接结合在体外得到了进一步验证,并且在活胶质母细胞瘤细胞中确定了MAPK14激酶活性的抑制作用。对生物物理数据的共识,分子建模表明,甲苯达唑能够结合MAPK14的催化位点。最后,基因沉默表明MAPK14参与胶质母细胞瘤肿瘤球体生长和对甲苯二唑治疗的反应。它还为新型MAPK14/p38 A抑制剂的发展开辟了新的途径。这项研究很高,因此很高的是MAPK14在甲苯二唑作用机理中的作用,并为MAPK14在脑肿瘤中的药理学靶向提供了进一步的理由。