抽象茶厂在生物活性化合物中丰富,包括类黄酮,氨基酸,生物碱,萜类化合物和脂质,这些主要影响茶质量和口味。尽管有许多关于不同茶品种的代谢产物的研究,但其生物合成和调节的组成差异仍然是未知的。在这项研究中,使用靶向的代谢组学广泛的代谢组学,包括192个黄酮和28 neminds和28 amino,从根尖的芽中检测到505种代谢产物('shuchazao':'scz':'scz':'scz':'huangkui':'hk'和'hk'和'zijuan':'zj':'zj'。代谢产物分析表明,黄酮醇和花色苷主要以三种品种的糖苷形式分布,其中花青素及其糖苷主要在“ ZJ”中积累,表明与颜色属性有相关性。EGCG成为三种品种中最丰富的Flavan-3-ols化合物。l-茶氨酸代表主要的游离氨基酸,与1叶相比,主要集中在顶端芽中,但同样,脂质与游离氨基酸相似,主要是在三个品种的顶端芽中积聚。这些发现为遗传和代谢物多样性提供了宝贵的见解,从而增强了我们对茶叶特定代谢物的生物合成的理解。
抽象的梭状芽胞杆菌艰难梭菌感染(CDI)是医院获得性腹泻的主要原因,这通常是由于广谱抗生素破坏了肠道菌群的破坏。抗生素耐药性艰难梭菌菌株的患病率不断增加,加上最近抗生素候选物的令人失望的临床试验结果,强调了对新型CDI抗生素的迫切需求。为此,我们研究了艰难梭菌Enoyl ACP还原酶(CD Fabk),这是一种从头脂肪酸合成中的至关重要的酶,是用于抗微生物组抗生素的药物靶标。为了测试这一概念,我们评估了苯基咪唑类似物296的活性的功效和体内谱,该光谱已验证以抑制细胞内CD Fabk。的抑制浓度最小(MIC 90)为2 µg/ml,与Vanymoncin(1 µg/mL)相当,这是一种护理抗生素标准。此外,有296个达到了高结肠浓缩,并在CDI结肠炎中显示出剂量依赖性疗效。给出了296个对艰难梭菌的定殖耐药性,并具有与未处理的小鼠相似的微生物组。相反,万古霉素和虚拟霉素都以与先前的报道一致的方式对小鼠微生物组诱导了显着变化。CD Fabk代表了占微生物组的CDI抗生素的潜在靶标,而苯基咪唑为设计这种剂提供了一个很好的化学起点。
2月是美国心脏月,是控制新年健康的最佳时机。心脏病是美国死亡的主要原因,归因于2021年心血管疾病的五分之一死亡,但您可以采取一些措施来最大程度地减少风险因素。这些活动是一个很好的起点:安排您的年度身体:了解您的健康是照顾心脏的重要第一步。在您的年度身体上,您会发现血糖,胆固醇,血压等。另外,合格的员工和配偶从完成年度身体上获得200美元的健康奖励。尝试冥想:通过冥想来管理压力是照顾身体和思想的好方法。您可以独自尝试或亲自找到指导的调解。每天甚至几分钟都可以改变您的压力水平并支持心脏健康。进行移动:每周至少要进行2.5小时的体育锻炼。可以通过添加10或15分钟的活动来开始小
Agilox服务GmbH |商业园3 | lambach附近的A-4671 Neukirchen | FN 374520S | LG Wels | UID:ATU66997299 | eori:ateos1000081370 office@agilox.net | www.agilox.net |电话。:+43 7245 93083 | RAIFFEISENLANDESBANKOBERösterreichAG,Iban:AT05 3400 0000
点击此处观看由全球首席执行官 Arthur Sadoun、全球首席战略官 Carla Serrano、Publicis Sapient 首席执行官 Nigel Vaz、Publicis Media 首席执行官 Dave Penski 和 Publicis North America 首席解决方案架构师 Sam Levine Archer 所作的长达一小时的演讲。 演讲概述:从平台到智能系统公司在过去的 6 年里,Publicis 真正成为了客户转型的合作伙伴。通过三大战略举措——收购 Sapient 和 Epsilon 将数据和技术置于中心位置、实施国家模型以及构建单一运营主干——它已从控股公司转变为平台。该平台组织使 Publicis 在财务和财务外 KPI 方面均超越市场。而且,它现在还使集团能够充分利用人工智能的力量,成为一家智能系统公司,能够连接每个数据点、跨越每个专业知识、业务部门和地区,并将它们交到所有员工手中。简而言之,得益于向智能系统公司的转变,阳狮集团内的每个人都将成为数据分析师、工程师、情报合作伙伴,他们可以轻松获得所需的所有信息,以推动客户增长。这一雄心壮志已成为现实具体而言,阳狮集团正在其平台组织中注入一层人工智能,以将其企业知识整合到一个实体之下:CoreAI。得益于 Publicis Sapient 无与伦比的人工智能专业知识和合作伙伴关系,该集团正在内部和整个企业内构建这个统一的人工智能主导基础,这些专业知识和合作伙伴关系包括为 Nvidia 设计用于训练 ChatGPT 等人工智能模型的芯片,以及开发跨多个行业的人工智能驱动的数字消费者旅程。
细胞膜经过生物物理重塑作为对周围环境的适应并执行特定的生物学功能。但是,这种变化在人类免疫系统中的程度和相关性仍然未知,这主要是由于缺乏高通量和多维方法。在这里,我们描述了一种基于单细胞分辨率的基于细胞术的方法,该方法通过将生物物理分析与常规生物标志物分析相结合来填补这一技术空白。该平台允许在免疫刺激和疾病中揭示膜流动性的明显依赖性细胞类型的重塑。使用暴露于肿瘤微环境的免疫细胞,以及长期的共同和慢性淋巴细胞白血病患者,我们证明了膜的流动性与表面标记物表达正交。此外,该生物物理参数确定了先前仅通过表面标记物分析未发现的免疫细胞的新功能和病理状态。我们的发现将根据其生物物理特性有助于对免疫细胞态的更精确的定义,并为更好地理解免疫细胞的功能异质性铺平道路。
癌症是全球普遍存在的健康挑战,它促使人们采取积极的治疗措施,其中化疗是针对不受控制的细胞生长的主要方法。虽然化疗药物(尤其是烷化剂、抗代谢物和其他药物)对肿瘤有效,但它们会对健康组织(尤其是肾脏)造成附带损害。本文探讨了化疗对肾脏蛋白质和酶的复杂影响,尤其是 Klotho 蛋白,它是衰老和长寿的关键因素。烷化剂通过氧化应激引起肾毒性,影响 Klotho 的合成和抗氧化防御。抗代谢物会破坏 DNA 合成,可能损害肾功能。抗肿瘤抗生素、拓扑异构酶抑制剂、有丝分裂抑制剂和激素疗法都会导致肾毒性。由于 Klotho 缺乏症成为癌症患者寿命缩短的一个关键因素,本文讨论了 GLP-1 激动剂(如 Ozempic)在刺激 Klotho 生成方面的潜在作用。这种双重作用方法可以减轻化疗引起的肾毒性,为提高癌症患者的健康和寿命提供了一种新策略。关键词:化疗;肾毒性;肾蛋白;Klotho 蛋白;烷化剂;抗代谢物;Glp-1 激动剂;Ozempic;癌症寿命
1.Patil G 、Patel R、Jaat R、Pattanayak A、Jain P、Srinivasan R. (2009) 谷氨酰胺改善鹰嘴豆 (Cicer arietinum L.) 芽形态发生 Acta Physiologiae Plantarum 。1;31(5):1077-84。2.Patil G 、Deokar A、Jain PK、Thengane RJ 和 Srinivasan R (2009) 开发基于磷酸甘露糖异构酶的农杆菌介导鹰嘴豆 (Cicer arietinum L.) 转化系统 Plant Cell Reports , 28 (11), pp.1669-1676。3.Patil G, Nicander B (2013) 在小立碗藓中鉴定出 tRNA 异戊烯基转移酶家族的另外两个成员。植物分子生物学。1;82(4- 5):417-26。4.Deshmukh R, Sonah H, Patil G , Chen W, Prince S, Mutava R, Vuong T, Valliyodan B 和 Nguyen HT (2014) 整合组学方法,提高大豆对非生物胁迫的耐受性。植物科学前沿,5,第 244 页。5.Patil G、Valliyodan B、Deshmukh R、Prince S、Nicander B、Zhao M、Sonah H、Song L、Lin L、Chaudhary J、Liu Y、Nguyen H (2015) 大豆 (Glycine max) SWEET 基因家族:通过比较基因组学、转录组分析和全基因组重测序分析获得的见解。BMC Genomics,16 (1),第 520 页。6.Chen W, He S, Liu D, Patil GB , Zhai H, Wang F, Stephenson TJ, Wang Y, Wang B, Valliyodan B 和 Nguyen HT (2015) 甘薯香叶基香叶基焦磷酸合酶基因 IbGGPS 可增加拟南芥的类胡萝卜素含量并增强其渗透胁迫耐受性。PLoS One , 10 (9) 7.Prince SJ, Joshi T, Mutava RN, Syed N, Vitor, M, Patil G, Song L, Wang J, Lin L, Chen W, Shannon JG, Nguyen H (2015) 大豆品系抗旱转录组的比较分析,以对比冠层萎蔫。植物科学,240,第 65-78 页。8.Chaudhary、Patil GB、Sonah H、Deshmukh RK、Vuong TD、Valliyodan B 和 Nguyen HT (2015) 扩大组学资源以改善大豆种子组成性状。植物科学前沿,6,第 1021 页。9.Syed N、Prince S、Mutava R、Patil G*、Li S、Chen W、Babu V、Joshi T、Khan S 和 Nguyen H,(2015) 核心时钟、SUB1 和 ABAR 基因通过大豆中的可变剪接介导洪水和干旱反应。《实验植物学杂志》,66 (22),第 7129-7149 页。10.Prince SJ、Song L、Qiu D、dos Santos J、Chai C、Joshi T、Patil G、Valliyodan B、Vuong TD、Murphy M 和 Krampis K (2015) 大豆种质中根结构相关基因的遗传变异,是改良栽培大豆的潜在资源。11.12.BMC 基因组学,16 (1),第 132 页。Sonah H、Chavan S、Katara J、Chaudhary J、Kadam S、Patil G 和 Deshmukh R (2016) 谷物中木聚糖酶抑制蛋白 (XIP) 基因的全基因组鉴定和表征。Indian J. Genet。Plant Breed,76,第 159-166 页。Asekova S、Kulkarni K、Patil G、Kim M、Song J、Nguyen HT、Shannon J 和 Lee J (2016) 野生 (G. soja) 和栽培 (G. max) 大豆杂交种芽鲜重的遗传分析。Molecular Breeding,36 (7),第 103 页。13.Song L, Nguyen N, Deshmukh R, Patil GB , Prince S, Valliyodan B, Mutava R, Pike S, Gassmann W 和 Nguyen H, (2016) 大豆 TIP 基因家族分析和
风能是一个快速增长的可再生能源领域,可减少温室气体排放并提供可持续的能源。但是,风力发电厂地区的环境破坏是一个新兴问题。这项研究旨在分析风草道对森林地区陆生动物的影响。进行了摄像头陷阱调查,以调查道路管理对野生动植物行为的影响。,我们沿着连接风力涡轮机的道路安装了52台摄像机三个月(10月1日至2021年12月30日),在韩国的Yeongyang-gun风电场上安装了摄像头,并使用占用模型评估了动物占用和检测概率。使用与地形和植被有关的因素来估计占用概率(使用站使用)。检测分析包括护栏,风力涡轮机,灌木丛和挡土墙的存在或不存在。其他变量包括摄像机类型,相机操作的天数和调查时间。在调查期间,使用摄像头捕获了七个陆地哺乳动物(Roe Deer,野猪,水鹿,浣熊,le狗,le夫,豹子,猫和马滕斯)。根据相机陷阱的记录,Roe Deer是最主要的物种,其次是野猪,浣熊狗和鹿,较少的the和Martens。就使用概率而言,道路区域中森林的存在是大多数物种的重要因素,而相机类型对于检测概率很重要。我们的结果表明,风电场与野生动植物的分布和福利间接相关。在道路上检测动物表明道路是野生动植物的通道,影响车辆行动过程中的动物行为,并可能导致栖息地断开。减轻野生动植物破坏的有效管理政策可以支持可持续的生态系统和生物多样性。这项研究的结果可以作为支持野生动植物保护,陆地生态系统和环境影响评估的参考。