摘要:在定向分化和生存的挑战中,尽管干细胞在再生医学中具有有希望的治疗潜力,但仍有临床使用。纳米技术已成为解决这些挑战并能够精确控制干细胞命运的有力工具。在细胞性的纳米材料中可以模仿细胞外基质,并提供特定的线索来指导纳米技术领域的干细胞分化和增殖。例如,最近的研究表明,纳米结构的表面和支架可以增强由细胞内调节和外部刺激调节的干细胞谱系组合,例如活性氧(ROS)清除,自动噬菌体或电刺激。此外,可用于基于纳米工程的纳米纳米颗粒来提供生物活性分子,生长因子和遗传材料,以促进干细胞分化和组织再生。在干细胞研究中,纳米结构的使用日益增加导致了新的治疗方法的发展。因此,本综述概述了调节干细胞分化(包括金属,碳和基于肽的策略)的纳米材料的最新进展。此外,我们通过专注于提高分化效率和治疗剂来强调这些支持纳米技术在干细胞治疗的临床应用中的潜力。我们认为,这篇综述将激发研究人员加强他们的努力并加深他们的理解,从而加快干细胞分化调节,制药行业的治疗应用以及干细胞治疗疗法的发展。
摘要:二维(2D)范德华异质结合了单个2D材料的独特特性,导致超材料,非常适合新兴的电子,光电,光电和自旋形成现象。在利用这些特性用于未来的混合电路方面的一个重大挑战是它们的大规模实现并集成到石墨烯互连中。在这项工作中,我们证明了二硫化钼(MOS 2)晶体在图案化石墨烯通道上的直接生长。通过通过限制的空间化学蒸气沉积生长技术增强对蒸气转运的控制,我们实现了单层MOS 2晶体在单层石墨烯上的优先沉积。原子分辨率扫描透射电子显微镜揭示了杂结构的高结构完整性。通过深入的光谱表征,我们在石墨烯/MOS 2中揭示了电荷转移,MOS 2将p-型掺杂到石墨烯中,如我们的电气测量所证实。光电导率表征表明,可以在MOS 2层覆盖的石墨烯通道中局部创建光活性区域。时间分辨超快的超快瞬态吸收(TA)光谱揭示了在石墨烯/MOS 2异质结构中加速的电荷衰减动力学,对于以下带隙激发条件的上转换。我们的概念验证结果为范德华异质结构电路的直接增长铺平了道路,对超快光活性纳米电子和播客应用具有重要意义。关键字:石墨烯,TMD,现场效应晶体管,范德华异质结构,超快,光活动电路■简介
这项工作探讨了用于光学传感和光子技术的发光玻璃材料和复合材料的设计,合成和应用。该研究的重点是使用适合纤维图的氧化物玻璃基质(例如校尿石和磷酸盐玻璃)来开发新型的光学活性材料,这些玻璃是经过修改以改善其光学和热性能的。引入网络修饰符,尤其是氟化物,导致具有透明度和适当化学稳定性的玻璃系统。这些矩阵用稀土离子(RE 3+)和纳米颗粒掺杂,它们还用作发光配位聚合物(LN-CP)生长的底物,从而使新玻璃@LN-CP复合材料产生具有化学传感潜力的重要潜力。采用系统方法来使用诸如X射线衍射(XRD),拉曼光谱,固态核磁共振(NMR)和吸收光谱的技术来表征这些玻璃基质,从而提供了对其结构,光学,光学和热特性的见解。与RE 3+共掺杂的光学活性磷酸盐玻璃的合成证明了促进上转换(UC)发光的能力,突出了它们的光子应用潜力。这项研究还强调了玻璃@LN-CP复合材料的发展,该复合材料通过玻璃基板和光纤上的原位生长合成。这些复合材料对丙酮和2-戊酮等羰基化合物表现出强烈的发光响应,证明了它们的化学传感潜力。此外,涂层的光纤可以在长距离内传输发光信号,从而促进了分析物的实时和远程检测。因此,本文有助于开发新的发光材料和基于光纤的传感器,为创新的光学传感器和光子设备提供了多功能平台。
摘要:向上转换纳米颗粒(UCNP)具有独特的非线性光学特性,可以在显微镜,传感和光子学中利用。然而,形成具有较大填充分数的UCNP的高分辨率纳米和微分简单仍然具有挑战性。此外,人们对纳米颗粒模式化学的形式如何受粒径影响有限。在这里,我们使用形成新离子链接的配体或在UCNP之间(uviolet(uv),eleton- beam(e -elethir)(e -beam)(e -beam)(e -beam)和附近(nir)和附近(nir -nir)和附近(nir -nir)(nir)和附近(nir -extrare)(extrife)(ybem extruared(e -beam),我们探索了6-18 nm tm 3+ - ,yb 3+ /tm 3+ - 和yb 3+ /er 3+基于yb 3+ /er 3+的UCNP。 我们研究UCNP大小对这些图案方法的影响,发现6 nm UCNP可以用紧凑的离子配体进行图案化。 相比之下,对较大的UCNP进行构图需要长链,可交叉的配体,这些配体可提供足够的颗粒间距,以防止在膜铸造时进行不可逆的聚集。 与使用可交联液体单体的方法相比,我们的图案方法限制了与沉积在薄膜中沉积的UCNP上的配体的交联反应。 这种高度局部的照片 - /电子引发的化学能力可以制造具有高分辨率的密集包装的UCNP图案(约为1μm,紫外线和NIR暴露; <100 nm,具有E型束)。 我们的上转换nir光刻方法证明了将廉价连续波激光器用于胶体材料的高分辨率2D和3D光刻的潜力。我们探索了6-18 nm tm 3+ - ,yb 3+ /tm 3+ - 和yb 3+ /er 3+基于yb 3+ /er 3+的UCNP。我们研究UCNP大小对这些图案方法的影响,发现6 nm UCNP可以用紧凑的离子配体进行图案化。相比之下,对较大的UCNP进行构图需要长链,可交叉的配体,这些配体可提供足够的颗粒间距,以防止在膜铸造时进行不可逆的聚集。与使用可交联液体单体的方法相比,我们的图案方法限制了与沉积在薄膜中沉积的UCNP上的配体的交联反应。这种高度局部的照片 - /电子引发的化学能力可以制造具有高分辨率的密集包装的UCNP图案(约为1μm,紫外线和NIR暴露; <100 nm,具有E型束)。我们的上转换nir光刻方法证明了将廉价连续波激光器用于胶体材料的高分辨率2D和3D光刻的潜力。沉积的UCNP模式保留了它们的上转换,雪崩和照片处理行为,可以在模式的光学设备中利用这些行为,以用于下一代UCNP应用程序。
摘要 越来越多的证据强调了肠道屏障及其与饮食和肠道微生物群的复杂网络在炎症性肠病 (IBD) 和结肠炎相关结直肠癌 (CRC) 发病机制中的关键作用。此外,肠道屏障与肝脏和大脑的双向关联,称为肠脑轴,在并发症的发生中起着至关重要的作用,包括 IBD 的肠外表现和 CRC 转移。因此,屏障修复是这些炎症依赖性疾病的关键治疗目标,屏障评估可预测疾病结果、对治疗的反应和肠外表现。新的先进技术正在彻底改变我们对屏障范式的理解,使我们能够准确评估肠道屏障并有助于解开肠脑轴的复杂性。尖端内窥镜成像技术,例如超高倍率内吞镜和基于探针的共聚焦激光内窥镜,是允许实时探索“细胞”肠道屏障的新技术。此外,新型先进空间成像技术平台,包括多光谱成像、上转换纳米粒子、数字空间分析、光谱和质谱流式细胞术,能够对“分子”和“超微结构”屏障进行深入而全面的评估。在这个充满希望的领域,人工智能在标准化和集成这些新工具方面发挥着关键作用,从而有助于屏障评估和结果预测。展望未来,这种综合全面的方法有望发现新的治疗靶点,打破 IBD 的治疗上限。新型分子、饮食干预和微生物组调节策略旨在恢复、强化或调节肠脑轴。这些进步有可能为管理 IBD 提供变革性和个性化的方法。
摘要:对紫外线(〜3.2 eV)和高光生成电荷重组率的独家反应性是纯TIO 2的两个主要缺点。我们结合了N掺杂的石墨烯量子点(N-GQD),形态调节和异质结构约束策略,以合成N-GQD /N-GQD /N掺杂TIO 2 /poped tio tiO tiO tiO popered poped poped poped poped tio g-c 3 n 4纳米管(PCN)纳米管(PCN)综合摄影剂(以g-tpcn表示)。最佳样品(用0.1WT%N-GQD掺杂的G-TPCN(表示为0.1%G-TPCN)表现出显着增强的光吸收,这归因于元素掺杂(P和N),元素掺杂(P和N)的变化,改善了The The The The The The The The The The UpConsConsion效应。此外,内部电荷分离和转移能力的0.1%G-TPCN被显着增强,其载体浓度分别为3.7、2.3和1.9倍N-TIO 2,PCN和N-TIO 2 /PCN(TPCN-1)的载体浓度。这种现象归因于N-TIO 2和PCN之间的Z-Scheme杂结,N-GQD的exclent电子传导能力以及由多孔纳米管结构引起的短传递距离。与N-TIO 2,PCN和TPCN-1相比,在可见光下的H 2生产活性分别增强了12.4、2.3和1.4次,以及其环丙沙星(CIP)降解率分别增加了7.9、5.7和2.9次。优化的表现受益于出色的光自我复杂性和提高的载体分离和迁移效率。最后,提出了CIP的0.1%G-TPCN和五个可能的降解途径的光载体机制。这项研究阐明了多重修饰策略的机制,以协同改善0.1%G-TPCN的光催化性能,并为合理设计新型的光催化剂提供了一种潜在的策略,以进行环境修复和太阳能转换。
透明样品的荧光量子产率C.Würth#,M。Grabolle#,J。Pauli,M。Spieles和U. Resch-Genger BamBundesanstaltfür物质FORSCHUNG UND - PRüfung,Richard-Willstaetter-Str。11,D-12489德国柏林#:两位作者同样贡献了MS通讯作者Ute Resch-Genger博士Ute Resch-Genger博士,联邦材料研究与测试研究所(BAM),第1.10级生物探测器,Richard-Willstaetter-STR。11,D-12489柏林,德国,电话:0049-(0)30-8104 1134,传真:0049-30-30-8104 1157,电子邮件:ute.resch@bam.de摘要 - 发光技术是生活和材料史上最广泛使用的检测方法。这些方法的核心是多种荧光报道,即简单染料,荧光标签,探针,传感器以及来自不同荧光团类别的开关,范围从小有机染料和金属离子复合物,量子点和量子点和上的纳米晶体,到不同尺寸的荧光量或实验室的液体 - 型号或实验室。荧光团比较的关键参数是荧光量子产率(φF):直接度量吸收光转化为发射光的效率。在此协议中,我们描述了使用光学方法对透明溶液中荧光团相对和绝对确定的相对和绝对确定的程序,并解决了不确定性和荧光团类别特定挑战的典型来源。对于φF的相对确定,使用常规荧光光谱仪分析样品。为了绝对确定φF,使用了校准的独立集成球体设置。为了减少针对相对测量的标准相关不确定性,我们引入了CA波长区域的八个候选量子产量标准标准。350 nm至950 nm由我们评估的商业和定制设计的仪器。使用这些方案和标准,可以在2小时内实现5%至10%的不确定性。简介
在挑战性条件下(例如强背景辐射或复杂的散射环境),具有忠实操作的主动光传感器对于跨越各种域的遥感应用是非常可取的。诸如远程陆地映射,轨道地震学或非侵入性生物医学成像之类的示例还包括探测信号的极端光子饥饿,创造了可能对基于线性光学的传统传感器进行挑战的条件。在这项工作中,我们通过基于非线性光学元件来证明一种新型的传感系统来解决这些挑战,该系统能够同时进行三维成像和激素分析,具有单光子的灵敏度和对各种噪声来源的特殊耐受性。这种非线性光学系统利用量子 - 参数模式分类(QPM),这是一种在光谱重叠的光子上选择性检测单个信号光子的新生技术,它将基于线性光学器件的其他系统产生干扰噪声。这项工作展示了一个基于QPM的成像仪,该成像仪可以可靠地重建高度散射的模糊剂,这些靶标具有毫米深度分辨率,这是由于非线性光学的时间 - picseconds脉冲的传输。利用模式选择性上转换在Niobate波导中,我们展示了耐噪声的成像,其中很少的信号光子嵌入了34倍左右重叠的背景光子中,每个探针脉冲脉冲的背景光子超过100,000倍。本研究为新的检测方式奠定了基础,该模式可能适用于各种应用。引入了基于QPM的成像仪后,其传感能力的维度被扩展到包括振动测量值,以解决由表面振动引起的时变强度波动。我们表明,可以通过计算振动光谱作为光门控的振动光谱来进行深度分辨的振动分析。使用振动签名作为一种对比机制,我们在检测强散射后面的振动目标时证明了20 dB的改善。
2 Google Quantum AI,加利福尼亚州戈利塔 超导量子处理器是最先进的量子计算技术之一。基于这些设备的系统已经实现了后经典计算 [1] 和量子纠错协议的概念验证执行 [2]。虽然其他量子比特技术采用自然产生的量子力学自由度来编码信息,但超导量子比特使用的自由度是在电路级定义的。当今最先进的超导量子处理器使用 transmon 量子比特,但这些只是丰富的超导量子比特之一;在考虑大规模量子计算机的系统级优化时,替代量子比特拓扑可能会证明是有利的。在这里,我们考虑对 Fluxonium 量子比特进行低温 CMOS 控制,这是最有前途的新兴超导量子比特之一。图 29.1.1 比较了 transmon 和 Fluxonium 量子比特。 transmon 是通过电容分流约瑟夫森结 (JJ) 实现的,是一种非线性 LC 谐振器,其谐振频率为 f 01,非谐性分别在 4-8GHz 和 200-300MHz 范围内。transmon 有限的非谐性约为 5%,限制了用于驱动量子比特 f 01 跃迁的 XY 信号的频谱内容,因为激发 f 12 跃迁会导致错误。以前的低温 CMOS 量子控制器通过直接 [3,4] 或 SSB 上变频 [5,6] 复杂基带或 IF 包络(例如,实施 DRAG 协议)生成光谱形状的控制脉冲;这些设备中高分辨率 DAC 的功耗和面积使用限制了它们的可扩展性。fluxonium 采用额外的约瑟夫森结堆栈作为大型分流电感。这样就可以实现 f 01 频率为 ~1GHz 或更低的量子比特,而其他所有跃迁频率都保持在高得多的频率(>3GHz,见图 29.1.1)[7]。与 transmon 相比,fluxonium 的频率较低且非谐性较高,因此可以直接生成低 GHz 频率控制信号,并放宽对其频谱内容的规范(但需要更先进的制造工艺)。在这里,我们利用这一点,展示了一种低功耗低温 CMOS 量子控制器,该控制器针对 Fluxonium 量子比特上的高保真门进行了优化。图 29.1.2 显示了 IC 的架构。它产生 1 至 255ns 的微波脉冲,具有带宽受限的矩形包络和 1GHz 范围内的载波频率。选择规格和架构是为了实现优于 0.5° 和 0.55% 的相位和积分振幅分辨率,将这些贡献限制在平均单量子比特门错误率的 0.005%。它以 f 01 的时钟运行,相位分辨率由 DLL 和相位插值器 (PI) 实现,而包络精度则由脉冲整形电路实现,该电路提供粗调振幅和微调脉冲持续时间(与传统控制器不同,使用固定持续时间和精细幅度控制)。数字控制器和序列器可播放多达 1024 步的门序列。图 29.1.2 还显示了相位生成电路的示意图。DLL 将这些信号通过等延迟反相器缓冲器 (EDIB) 后,比较来自电压控制延迟线 (VCDL) 的第一个和第 31 个抽头的信号。这会将 CLK[0] 和 CLK[30] 锁定在 180°,并生成 33 个极性交替的等延迟时钟信号。使用 CLK[30] 而不是 CLK[32] 来确保在 PFD 或 EDIB 不匹配的情况下实现全相位覆盖,这可能导致锁定角低于 180°。一对 32b 解复用器用于选择相邻的时钟信号(即 CLK[n] 和 CLK[n+1]),开关和 EDIB 网络用于驱动具有可选极性的 PI。 PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。
缩写:3D,三维;ABA,氨基苯硼酸;ACC,氨基羧甲基壳聚糖;ACNC,乙酰化纤维素纳米晶体;AF,纤维环;AF127,醛封端的普卢兰尼克 F127;AG-NH2,琼脂糖-乙二胺共轭物;Ag-CA,羧基化琼脂糖;AHA,醛基透明质酸;AHAMA,甲基丙烯酸酯化醛基透明质酸;AHES,醛基羟乙基淀粉;ALG,海藻酸钠;AMP,抗菌肽;APC,抗原呈递细胞;ASF,乙酰化大豆粉;AT,苯胺四聚体;ATAC,2-(丙烯酰氧基)乙基三甲基氯化铵;ATRP,原子转移自由基聚合;Azo,偶氮苯;家蚕,Bombyx mori;BA,硼酸;BCNF,氧化细菌纤维素纳米纤维;Bio-IL,生物离子液体;BMP-2,骨形态发生蛋白 2;BSA,牛血清白蛋白;BTB,硼砂-溴百里酚蓝;Ca-FA,CaCl 2 -甲酸;CA,氰基丙烯酸酯;Cat,含儿茶酚的多巴胺-异硫氰酸酯;Cat-ELPs,儿茶酚功能化的 ELR;CBM,纤维素结合模块;CD,环糊精;CD-HA,β-CD 修饰的透明质酸;CDH,碳酰肼;cGAMP,环状鸟苷单磷酸-腺苷单磷酸;CH,胆固醇半琥珀酸酯;CHI-C,儿茶酚共轭壳聚糖; CL/WS2,二硫化钨-儿茶酚纳米酶;CMs,心肌细胞;CMCS,羧甲基壳聚糖;CNC,纤维素纳米晶体;CNF,纤维素纳米纤维;CNT,碳纳米管;COL,胶原蛋白;CPEs,化学渗透促进剂;CS,硫酸软骨素;CsgA,Curli 特异性纤维亚基 A;CS-NAC,壳聚糖-N-乙酰半胱氨酸;CSF,脑脊液;CTD,C 端结构域;CtNWs,几丁质纳米晶须;D-MA,甲基丙烯酸酯化羟基树枝状聚合物;DAHA,二醛-透明质酸;DCs,树突状细胞;DDA,葡聚糖二醛;dECM,脱细胞 ECM; DEXP,地塞米松磷酸二钠;Dex,葡聚糖;DF-PEG,双醛功能化聚乙二醇;DNNA,双网络神经粘合剂;DOPA,L-3,4-二羟基苯丙氨酸;DOX,阿霉素;DPN,脱细胞周围神经基质;DST,双面胶带;E-tattoo,电子纹身;E. coli,大肠杆菌;ECG,心电图;ECM,细胞外基质;ePTFE,聚四氟乙烯;ELP,弹性蛋白样多肽;ELRs,弹性蛋白样重组体;EMG,肌电图;EPL,ε-聚赖氨酸;EPS,胞外多糖;ER,内质网;FDA,食品药品监督管理局;FGFs,成纤维细胞生长因子;FibGen,京尼平交联纤维蛋白凝胶; FITC,硫氰酸荧光素;FS-NTF,纳米转移体;呋喃,糠胺;GA,没食子酸;GAG,糖胺聚糖;GC,乙二醇壳聚糖;Gel-CDH,碳酰肼修饰明胶;GelDA,多巴胺修饰明胶;GelMA,明胶-甲基丙烯酰;GI,胃肠道;GRF,明胶-间苯二酚-甲醛;GRFG,明胶-间苯二酚-甲醛-戊二醛;H&E,苏木精和伊红;HA,透明质酸;HA-Ac,透明质酸-丙烯酸酯;HA-ADH,己二酸二酰肼修饰透明质酸;HA-ALD,醛修饰透明质酸;HA-NB,硝基苯衍生物修饰透明质酸;HA-PEG,透明质酸-聚乙二醇;HA-PEI,透明质酸-聚乙烯亚胺;HA-SH,硫醇化透明质酸;HAGM,透明质酸甲基丙烯酸缩水甘油酯;HaMA,甲基丙烯酸酯化透明质酸; HAp,羟基磷灰石;HBC,羟丁基壳聚糖;HES,羟乙基淀粉;HFBI,疏水蛋白;HIFU,高强度聚焦超声;hm-Gltn,疏水改性明胶;HPMC,羟丙基甲基纤维素;HRP,辣根过氧化物酶;Hypo-Exo,缺氧刺激的外泌体;ICG,吲哚菁绿;iCMBAs,基于柠檬酸盐的受贻贝启发的生物粘合剂;IGF,胰岛素样生长因子;iPSC,多能干细胞;IPTG,β-d-1-硫代半乳糖苷;ITZ,伊曲康唑;IVD,椎间盘;JS-Paint,关节表面涂料;KGF,角质形成细胞生长因子;KaMA,甲基丙烯酸酯化κ-角叉菜胶; LAP,苯基-2,4,6-三甲基苯甲酰膦锂盐;LCS,液晶;LCST,低临界溶解温度;LDH,层状双氢氧化物;LDV,亮氨酸-天冬氨酸-缬氨酸;LM,液态金属;m-AHA,单醛透明质酸;MA,甲基丙烯酸酐;MADDS,粘膜粘附药物递送系统;MAP,贻贝粘附蛋白;MATAC,2-(甲基丙烯酰氧基)乙基三甲基氯化铵;mAzo-HA,mAzo 修饰透明质酸;MBGN,介孔生物活性玻璃纳米颗粒;MCS,修饰茧片;MDR,多重耐药;mELP,甲基丙烯酰弹性蛋白样多肽;MeTro,甲基丙烯酰取代的原弹性蛋白;Mfp,贻贝足蛋白; MI,心肌梗死;MMP,基质金属蛋白酶;MN,微针;MPs,单分散微粒;MRSA,耐甲氧西林金黄色葡萄球菌;MSC,间充质干细胞;NB,N-(2-氨基乙基)-4-[4-(羟甲基)-2-甲氧基-5-硝基苯氧基]-丁酰胺;NFC,纳米纤维化纤维素;NGCs,神经引导导管;NHS,N-羟基琥珀酰亚胺;NIR,近红外光;NPs,纳米粒子;NTD,N-端结构域;ODex,氧化葡聚糖;OHA-Dop,多巴胺功能化氧化透明质酸;OHC-SA,醛功能化海藻酸钠;OPN,骨桥蛋白; OSA-DA,多巴胺接枝氧化海藻酸钠;OU,口腔溃疡;p-AHA,光诱导醛透明质酸;PAA,聚丙烯酸;PAE,聚酰胺胺-环氧氯丙烷;PAMAM,胺基端基第五代聚酰胺多巴胺;PBA,苯基硼酸;PCL,聚己内酯;PDA,聚多巴胺;PDMS,聚二甲基硅氧烷;PDT,光动力疗法;PEA,2-苯氧乙基丙烯酸酯;PEG,聚乙二醇;PEDOT,聚(3,4 乙烯二氧噻吩);PEI,聚乙烯亚胺;PEGDMA,聚乙二醇二甲基丙烯酸酯;PEMA,2-苯氧乙基甲基丙烯酸酯;PepT-1,肽转运蛋白-1;PG,焦性没食子酚;PGA,聚乙醇酸;pHEAA,聚(N-羟乙基丙烯酰胺);PMAA,羧甲基功能化聚甲基丙烯酸甲酯;PSA,压敏粘合剂;PTA,光热剂;PTT,光热疗法;PVA,聚乙烯醇;QCS,季铵化壳聚糖;rBalcp19k,重组白脊藤 cp19k;RGD,精氨酸-甘氨酸-天冬氨酸;rGO,还原氧化石墨烯; RLP,类弹性蛋白多肽;rMrcp19k,Megabalanus rosa cp19k;ROS,活性氧中间体;rSSps,重组蜘蛛丝蛋白;SCI,脊髓损伤;SCS,蚕茧片;SDBS,十二烷基苯磺酸钠;SDS,十二烷基硫酸钠;SDT,声动力疗法;SF,丝素;sIPN,半互穿聚合物网络;S. aureus,金黄色葡萄球菌;STING,干扰素基因刺激剂;SUPs,超荷电多肽;SY5,外皮蛋白抗体;TA,单宁酸;TEMED,四甲基乙二胺;TEMPO,2,2,6,6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素; Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。