摘要。气候变化已成为当今世界上最具威胁性的问题之一,其全球背景及其对环境和社会经济驱动力的反应。然而,不同的一般循环模型(GCM)和粗空间分辨率之间的巨大不确定性使得直接使用GCM的输出很难,尤其是在区域规模上可持续水管理的尤其是对降低降压技术的需求。This study aims (i) to evalu- ate the comparative performance of two widely used sta- tistical downscaling techniques, namely the Long Ashton Research Station Weather Generator (LARS-WG) and the Statistical Downscaling Model (SDSM), and (ii) to down- scale future climate scenarios of precipitation, maximum temperature ( T max ) and minimum temperature ( T min ) of the Upper Blue Nile River basin at finer空间和时间尺度适合进一步的水文影响研究。卡尔和验证结果表明,降尺度技术(LARS-WG和SDSM)均显示出可构成的综合和良好的模拟能力,可以模拟当前的局部气候变量。仅通过同样加权和变化的统计指数的权重进行进一步的定量和定性比较性能评估。评估结果表明,使用CANESM2 CMIP5 GCM的SDSM能够再现更准确的长期平均每月降水量,但Lars-WG在捕获整个数据范围内每天的极端事件和每日预启动的分布方面表现最佳。六个选定的多模型CMIP3 GCM,即HADCM3,GFDL-CM2.1,ECHAM5-OM,CCSM3,MRI-CGCM2.3.2和CSIRO-MK3 GCMS,用于降低缩放的气候
摘要目的:用于上限LIMB神经居住的机器人设备可以增加实践强度,通常依靠具有有限能力的基于视频游戏的培训策略来个性化培训和整合功能培训。本研究显示了机器人任务特定培训(TST)方案的开发,并评估所达到的剂量。材料和方法:混合方法研究。上肢的3D机器人装置可在神经康复期间使用治疗师使用。第一阶段允许临床医生为TST定义专门的会话协议。在第二阶段应用方案,并测量了达到的剂量。结果:第一阶段(n = 5):一种特定的协议,使用降级进行评估,然后进行定制的被动运动,然后开发了主动运动实践。第二阶段:该协议已成功应用于所有参与者(n = 10)。干预持续时间:4.5±0.8周,会话频率:1.4±0.2次/周,会话长度:42±9mins,会话密度:39±13%,强度:214±84个运动/会话,难度:DN = 0.77±0.1(归一化的距离),距离= 6.3±= 6.3±23±23±23±23±23±23±useverseversemberseversempesseans(spresseverseverseverseverseans)。sessions的密度和强度在参与者之间是一致的,但是观察到了明显的难度差异。在干预中未观察到指标的变化。结论:机器人系统可以通过调节参与者的需求和能力的实践难度来支持高治疗强度的TST。
● 协调舞蹈和普拉提计划 ● 为 PEAP 计划设计新课程 ● 为本科生编写 Skyepack 数字活动课程包:普拉提 ● 为本科生编写 Skyepack 数字活动课程包:尊巴 ● 支持和评估讲师 ● 提供研讨会和材料以培养讲师 ● 维护和订购项目设备 ● 教授健康与健身基础科学中的运动机能学课程 ● 为课程开发在线数字资源 ● 开发课程内容和作业 ● 促进健身和健康实验室 ● 评估和评估学生发展 ● 指导实践运动课程 ● 评估研究生并提供观察反馈 ● 作为学生个人发展的资源 ● 指导学生完成 223 课程的荣誉合同 ● 向学生团体介绍心理健康和保健讲座 ● 向教育工作者介绍课程和课程发展 ● 提供社区健康运动课程和健康教育 2019 - 2022 客座讲师
一个可以检测到行动和解码计划运动意图的系统,可以帮助所有可以计划运动但无法实施的受试者。在本文中,通过使用脑电图(EEG)信号来研究电动机计划活动,目的是解码运动制备阶段。在执行不同动作(肘部流量/扩展,前臂旋转/supination/supination/suplination/open/loth/collos)的过程中,可公开可用的61个通道EEG信号,右上肢录制了15个健康受试者的EEG信号。 引入了一种新型系统,用于静止与静止和前期时期的分类。 对于每个时期,所提出的系统都会通过光束成形和连续的小波变换(CWT)生成电动机源信号的时间频率(TF)图,然后将所有映射嵌入体积中并用作输入到深CNN中。 拟议的系统成功地歧视了前提下的平均准确度为90.3%(最低74.6%,最大100%),在文献中的表现优于可比较的方法,而在鉴别期间的VS vs vs vs等待中的平均准确度为62.47%。 所达到的结果鼓励通过深度学习方法在时间频域中的源级别调查电动机计划。可公开可用的61个通道EEG信号,右上肢录制了15个健康受试者的EEG信号。引入了一种新型系统,用于静止与静止和前期时期的分类。对于每个时期,所提出的系统都会通过光束成形和连续的小波变换(CWT)生成电动机源信号的时间频率(TF)图,然后将所有映射嵌入体积中并用作输入到深CNN中。拟议的系统成功地歧视了前提下的平均准确度为90.3%(最低74.6%,最大100%),在文献中的表现优于可比较的方法,而在鉴别期间的VS vs vs vs等待中的平均准确度为62.47%。所达到的结果鼓励通过深度学习方法在时间频域中的源级别调查电动机计划。
摘要。对对流层和下层平流层(UTL)中湿度的了解非常特别,因为它对卷云的形成及其气候影响的重要性。但是,当前天气模型中的UTLS水蒸气分布遭受大型不确定性。在这里,我们使用人工神经网络(ANN)开发了一种基于动态的Hu-Intimity校正方法,以改善ECMWF数值天气预测中ICE(RHI)的相对湿度。该模型是通过ECMWF ERA5的时间依赖性热力学和动力学变量进行训练的,以及来自服务机内的湿度测量,用于全球观察系统(IAGOS)。在±2 ERA5在iagos-tripter周围的±2 ERA5压力下的大气变量用于ANN训练。RHI,温度和地球电位对ANN结果的影响最高,而其他动态变量则具有低至中等或高度的重要性。ANN表现出色,UT中预测的RHI的平均绝对误差(MAE)为5.7%,确定的系数(R 2)为0.95,与ERA5 RHI相比,它显着改善(MAE5 RHI(MAE5)(15.8%; R 2 of 0.66)。ANN模型还提高了全套UT/LS和多云UTL的预测技能,并消除了RHI = 100%的峰值。相对于冰光厚度的MeteoSat第二代(MSG)观察到的结果比在没有湿度校正的结果上对大西洋上的关节尾卷心场景进行湿度校正的观察更好。ANN方法可以应用于其他天气模型,以改善湿度预测并支持航空和气候研究应用。
任何人都可以自由访问可作为“开放访问”的作品的全文。可根据创意共享许可提供的作品可根据所述许可条款和条件使用。使用所有其他作品的使用要求正确持有人(作者或出版商)同意,如果不符合适用法律的版权保护。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecom- mons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
主动上肢外骨骼是神经恢复的潜在强大工具。该潜力取决于几种基本控制模式,其中一种是透明度。在这种控制模式下,外骨骼必须遵循人类运动而不会改变它,从理论上讲,这意味着无效的相互作用工作。达到透明度的水平高,尽管不完美,既需要一种适当的控制方法,又需要对外骨骼对人类运动的影响进行深入评估。本文基于识别外骨骼动力学的识别,或者是在力反馈控制或结合下引入了三种不同的“透明”控制器的评估。因此,这些控制器可能会通过设计明显诱导不同水平的透明度。进行的调查可以更好地理解人类如何适应一定是不完事的透明控制器。一组14名参与者受到这三个控制者的束缚,同时在副臂平面进行运动。随后的分析是根据相互作用,运动学,肌电图和人体工程学反馈问卷进行的。结果表明,在执行透明的控制器较少的情况下,参与者的策略往往会引起相对较高的相互作用工作,并具有较高的肌肉活动,从而导致运动学指标的敏感性很小。换句话说,截然不同的残留互动工作并不一定会引起非常不同的运动运动学。这样的行为可以通过自然的人类倾向来解释以维护其首选的运动学的努力,应在将来的透明控制器评估中考虑到这一点。
了解大脑编码上肢运动如何对于辅助技术中的控制机制至关重要。辅助技术,尤其是脑机界面(BMI)的进步突出了解码运动意图和运动学对有效控制的重要性。基于EEG的BMI系统由于其非侵入性和诱导神经可塑性的潜力而增强运动康复结果的潜力而显示出希望。基于EEG的BMI显示了解码运动意图和运动学的潜力,但研究表明与实际或计划的运动的相关性不一致,对实现精确和可靠的假体控制提出了挑战。此外,个体的预测性脑电图模式的变异性需要个性化调整以提高BMI效率。整合多个生理信号可以提高BMI的精度和可靠性,为更有效的运动康复策略铺平道路。研究表明,大脑活动在运动过程中适应引力和惯性约束,突出了神经适应生物力学变化在创建辅助设备控制系统中的关键作用。本综述旨在全面概述与生理和辅助上肢运动相关的解密神经活动模式的最新进展,从而强调了在神经疗程和脑镜界面发展中未来探索的途径。
比萨大学,土木与工业工程系 - 航空航天部,意大利比萨 56122 lily.blondel@ing.unipi.it; alberto.sarritzu@ing.unipi.it; angelo.pasini@unipi.it b 米兰理工大学,航空航天、科学与技术系。 (DAER),20156 米兰,意大利 inigo.alforja@polimi.it; michelle.lavagna@polimi.it c 布伦瑞克工业大学,空间系统研究所,38106 布伦瑞克,德国 l.ayala-fernandez@tu-braunschweig.de d 布鲁塞尔自由大学,航空热力学系,1050 Bruxelles,比利时 riccardo.gelain@ulb.be ; patrick.hendrick@ulb.be 和 ONERA/DMPE,图卢兹大学,F-31410 Mauzac,法国 christopher.glaser@onera.fr;杰罗姆·安索因@onera.fr; Jouke.Hijlkema@onera.fr f 德累斯顿工业大学,航空工程学院,01062 德累斯顿,德国 Livia.Ordonjez-Valles@hs-bremen.de; martin.tajmar@tu-dresden.de g 不来梅应用技术学院,28199 不来梅,德国 Livia.Ordonjez-Valles@hs-bremen.de ; uapel@fbm.hs-bremen.de h 柏林工业大学,空间技术系,10587 柏林,德国 e.stoll@tu-berlin.de * 通讯作者
