二甲双胍广泛用于治疗2型糖尿病,最近因其潜在抗癌特性而引起了人们的关注。几项研究表明,二甲双胍治疗抑制结肠腺癌(COAD)中的细胞活力。然而,与肿瘤淋巴结(TNM)阶段有关的研究受到限制。作为COAD经常在高级阶段进行诊断,了解调节每个TNM阶段COAD发病机理的遗传因素以及二甲双胍对潜在治疗的影响。因此,我们在二甲双胍处理的COAD细胞中鉴定了TNM阶段的差异表达因子,并使用microRNA(miRNA)研究了其调节机制。通过生物信息学分析,四个连接的盒子激酶1(FJX1)和HSA-MIR-1306-3P被确定为在二甲双胍处理后在COAD中差异表达。二甲双胍治疗显着降低了细胞活力,观察到约50%的降低。使用定量实时PCR进行分析显示,与未经处理的细胞相比,二甲双胍处理后HSA-MIR-1306-3P的增加,FJX1表达降低。荧光素酶测定证实了HSA-MIR-1306-3P与FJX1的序列特异性结合。这些发现通过上调HSA-MIR-1306-3P调节FJX1表达来强调二甲双胍作为COAD的治疗剂的潜力,从而揭示了用于COAD处理的新型途径。
钩端螺旋体是导致钩端螺旋体病的致病细菌,这是一种世界范围内的人畜共患病。所有脊椎动物都可以被感染,某些物种像人类易受疾病的影响,而小鼠等啮齿动物具有抗性并成为无症状的肾载体。诱导性是隐形细菌,已知可以逃避几种免疫识别途径并抵抗杀死机制。我们最近发表说,钩端螺旋体可以在细胞内生存并退出巨噬细胞,避免了Xenophapy,这是一种自噬的病原体靶向形式。有趣的是,后者是经常被细菌KAKE的抗菌机制之一,以逃避宿主的免疫反应。在这项研究中,我们探讨了钩端螺旋体是否颠覆了自噬的关键分子参与者以促进感染。我们在胶噬细胞中表明,钩端螺旋体触发了自噬适应器p62在类似点状结构中的特定积累,而不会改变自噬型号。我们证明了钩端螺旋体诱导的p62积聚是一种被动机制,具体取决于通过TLR4/TLR2信号传导的钩端螺旋力毒力因子LPS信号。p62是一种中央多效性蛋白,也通过转移因子的易位介导细胞应激和死亡。我们证明了瘦素驱动的p62的积累诱导了转录因子NRF2的易位,这是抗氧化剂反应中的关键参与者。然而,钩端螺旋体感染的NRF2易位并未像抗氧化反应中所预期的那样导致,但抑制了炎性介质的生产,例如Inos/NOOS/NO,TNF和IL6。©2023作者。总体而言,这些发现突出了一种与LPS和p62/NRF2信号相关的新型无源细菌机制,该机制减少了炎症并有助于诱导性的隐身性。由Elsevier Masson SAS代表Pasteur Inster出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
虫草军事(Militaris)是典型的虫草代表[1]。它主要在南亚,欧洲和北美[2]发现,并且很长一段时间以来一直用作中草的可食用蘑菇[3]。更重要的是,它被认为是一些有价值的组成部分中最早的来源[4]。到目前为止,在军事念珠菌的人工文化中已经取得了很大的进步[5 E 7]。进一步的研究表明,军事梭菌可以产生具有功能特性[8]的多种生物活性相结合,例如治疗疲劳,肾功能障碍和呼吸道疾病[9]。此外,它的抗氧化,抗光灯和抗色素沉着性能在医疗行业引起了很多关注。例如,在C. mil-itaris中发现的生物活性化合物用于天然抗癌药物[10]和面膜化妆品[11 E 13],而其质量生产的副产品主要用于动物饲料。
在认知任务中,额心神经活动和功能连通性的增加,通常在老年人中观察到28。从积极的生活选择中获得的认知储量可以29提供其他神经资源来应对衰老。但是,认知储量如何与老年人的神经活动上调的30相互作用。我们在噪声任务中用fMRI测量了大脑活动31,并评估了从32个长期音乐训练布尔斯特(Bolsters)积累的认知储备还是将与年龄相关的上调活动持续。年长的音乐家33在34个听觉背区域中,与年长的非音乐家相比,任务引起的功能连通性的上调较少,这预测了老年音乐家的行为表现更好。这35个结果表明,认知储备可以阻止神经招募。除了功能性36连通性强度外,我们还发现,与年长的非音乐学家相比,年长的音乐家显示出更大的青年式空间37个功能连通性模式。我们的发现启发了噪声39感知中语音期间的认知储备与与年龄有关的上调活动之间的复杂38相互作用。40
摘要 背景 尽管目前的治疗方法包括手术、化疗、放疗以及最近的免疫疗法,但肺癌的死亡率仍然很高。对于肺癌,改变细胞周期、血管生成和程序性癌细胞死亡的表观遗传修饰是与免疫疗法相结合以提高治疗成功率的治疗目标。在最近的一项研究中,我们发现一种叫做 QAPHA((E)-3-(5-((2-氰基喹啉-4-基)(甲基)氨基)-2-甲氧基苯基)-N-羟基丙烯酰胺)的分子具有微管蛋白聚合和 HDAC 抑制剂的双重功能。在这里,我们研究了这种新型双重抑制剂对肺癌免疫反应的影响。方法 为了阐明 QAPHA 的作用机制,我们进行了化学蛋白质组学分析。使用肺癌体内小鼠模型(TC-1 肿瘤细胞),我们评估了 QAPHA 对肿瘤消退的影响。通过流式细胞术对肿瘤浸润免疫细胞进行表征。结果 在本研究中,我们首次通过蛋白质组学分析发现 QAPHA 可有效抑制组蛋白去乙酰化酶 6,从而导致 HSP90、细胞色素 C 和 caspases 上调。我们证实 QAPHA 通过在体外细胞表面表达钙网蛋白来诱导免疫原性细胞死亡 (ICD),并证明了其作为体内疫苗的有效性。值得注意的是,即使在低浓度 (0.5 mg/kg) 下,QAPHA 也能在接受肿瘤内治疗的小鼠中实现肿瘤完全消退,从而建立持久的抗癌免疫反应。此外,QAPHA 治疗促进了接受治疗的小鼠中 M1 极化巨噬细胞的浸润,表明在肿瘤内诱导了促炎环境。非常有趣的是,我们的研究结果还表明,QAPHA 在体外和体内均上调了 TC-1 肿瘤细胞中主要组织相容性复合体 II 类 (MHC-II) 的表达,从而促进了表达 CD4+、NKG2D+、CRTAM+ 和 Perforin+ 的细胞毒性 CD4+T 细胞 (CD4+CTL) 的募集。最后,我们表明肿瘤消退与肿瘤细胞和 CD4 + CTL 浸润中的 MHC-II 表达水平密切相关。结论总的来说,我们的研究结果有助于发现一种能够诱导 TC-1 肿瘤细胞中 ICD 和 MHC-II 上调的新型多靶点抑制剂。这些
基因组编辑技术显著提高了我们精确修改基因组和基因的能力,为设计内源途径和性状开辟了新的可能性。在玉米等作物中,已经证实可以实现小的插入/缺失、碱基变化和结构变异(Nuccio 等人,2021 年)。然而,虽然这些编辑通常会导致基因敲除 (KO) 或敲低,但许多农艺性状的改善需要更高的基因表达,有益的天然等位基因和转基因就是明证。因此,作物改良需要能够可预测和可调整地上调多个基因的工具,而没有使用转基因的技术限制和监管弊端。为了开发一种广泛适用的通过编辑增加基因表达的方法,我们寻找了一种玉米原生的小元素,可以将其插入内源启动子中以实现上调。我们在玉米基因组中发现了一个回文 12 bp 序列 GTAAGCGCTTAC(“植物增强子”,PE),它与农杆菌章鱼碱合酶启动子中已知的转录增强子元件(Bouchez 等人,1989)相似,并且也出现在其他作物(如大豆、水稻和大麦)的基因组中。为了在非同源末端连接 (NHEJ) 介导的 CRISPR/Cas 诱导的双链断裂修复过程中将 PE 插入玉米启动子中(图 1a),我们用金粒子轰击了来自 Cas9 表达系的未成熟玉米胚 (Lorenzo 等人,2022),这些金粒子包裹着 (i) 针对谷氨酰胺合成酶 1-3 (Gln1-3) 核心启动子的合成单向导 RNA (sgRNA),(ii) PE 三聚体 (3xPE) 作为双链寡脱氧核苷酸 (dsODN),两端有两个保护性硫代磷酸酯键,没有任何目标同源序列,和 (iii) 携带除草剂抗性标记和荧光蛋白的表达盒的质粒,允许在再生过程中进行选择和视觉筛选。39% 的再生系在目标启动子中携带 dsODN 衍生的插入。除了完美的 3xPE 插入,由于 NHEJ 的不精确性,我们还恢复了连接处有小插入/缺失的等位基因、截断处只留下一个或两个 PE 单体或插入一个以上 3xPE 元件的等位基因(图 1b)。插入等位基因通常存在于 50% 或 100% 的扩增子测序读数中,
miRNA 调节介导。miRNA 是细胞生物学的重要调节剂,在癌症中经常发生改变。事实上,在我们研究的癌症环境中,许多 miRNA 已被描述为肿瘤抑制因子 [38–40]。已证明 miR-186 和 miR-195 可抑制 NSCLC 癌细胞系和组织样本中的增殖、迁移和侵袭 [41–47]。此外,与 I-II 期 NSCLC 患者相比,肿瘤分级较高且转移较多的 NSCLC 患者的血清 miR-186 水平较高。miR-133b 通常在胃癌中下调,其抑制与更具侵袭性的表型相关 [48–51]。在膀胱癌中,miR-186 和 miR-139 均被描述为相关的肿瘤抑制因子,其下调与侵袭和转移有关 [52, 53]。
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域贡献豁免(http://creativecom-mons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
图2。corex基因(a,b)验证验证核心基因预测值的验证。精度表示真正是eCDNA(+)的预测样品的比例。召回是指正确预测的eCDNA(+)样品的比例。对于具有相似精度的多个点,绘制了最大召回率。(a)核心基因和核心基因的曲线重叠,表明相似的预测能力。(b)Corex基因具有较高的预测率,并且基于对数折叠的折叠变化(TOP-| LFC |基因)的643个差异表达基因。(c)Corex基因在肿瘤类型的ECDNA(+)样品中始终在肿瘤样品中持续上调,但SARC除外。(d)的643 top- | lfc |基因,240个上调,而403个在ECDNA(+)样品中下调。325上调,而318个下调。top- | lfc |的绝对LFC值基因集明显大于核心基因的基因(p值1.83E -158)。(e)Corex基因的归一化基因表达值显着高于Top-| LFC |的基因表达值。基因集(p -Value <2E -308)。*** p -Value <0.001。
摘要。– 目的:乳腺癌 (BC) 是全世界女性中最常见的癌症类型。人们提出了各种方法来治疗这种疾病,但没有一种单一的药物被证明是有效的。因此,了解不同药物的分子机制变得势在必行。本研究旨在评估厄洛替尼 (ERL) 和伏立诺他 (SAHA) 在诱导乳腺癌细胞凋亡中的作用。还根据一些癌症相关基因的表达谱评估了这些药物的作用;PTEN、P21、TGF 和 CDH1。材料和方法:在本研究中,乳腺癌细胞 (MCF-7) 和 MDA-MB-231 以及人羊膜细胞 (WISH) 用两种浓度 (50 和 100 µM) 的厄洛替尼 (ERL) 和伏立诺他 (又名 SAHA) 处理 24 小时。收获细胞用于下游分析。通过流式细胞仪分析DNA含量和细胞凋亡,并进行qPCR以评估不同癌症相关基因的表达。结果:结果表明,与正常细胞和对照相比,ERL和SAHA在24小时后将两种乳腺癌细胞都抑制在G2/M期。对于细胞凋亡,随着两种所用药物的浓度增加,BC细胞显示出升高的总细胞凋亡水平(早期和晚期),在24小时处理中,ERL的最有效浓度为100µM。在对照细胞中,SAHA被证明是在100µM浓度下最有效的药物,在24小时处理中细胞凋亡百分比范围为1.7-12%。在所使用的两种乳腺癌细胞系中,坏死也呈剂量依赖性。我们进一步评估了 PTEN 、 P21 、 TGF- β 和 CDH1 的表达谱。在 MCF-7 中,数据表明对于 TGF- β 、 PTEN 和 P21 ,最有效的治疗是浓度为 100 µM 的 SAHA,而对于 CDH1 ,最有效的浓度是 100 µM 的 ERL。在 MDA-MB-232 中也观察到了类似的情况,其中对于 TGF- β 、 PTEN 和 P21 ,最有效的治疗是浓度为 100 µM 的 SAHA,而对于 CDH1 ,最有效的浓度是 50 µM 的 SAHA。结论:我们的结果揭示了 ERL 和 SAHA 在调节癌症相关基因表达中的作用,尽管这些数据需要进一步研究。