已经对数据挖掘在包括CAD在内的疾病诊断中的应用进行了各种研究; [9,10]将建议的模型与基于PSO的自适应神经融化推理系统(PSO -ANFIS)进行了比较。结果表明,建议的模型优于PSO -ANFIS模型。建议的模型还具有2个重要好处:(1)它很快学习,(2)响应迅速。对于大型准确的数据集,快速学习和快速响应能力的重要性很重要。[11] Jackins等。进行了一项研究,以找到可用数据集中诊断糖尿病,冠心病和癌症的模型。他们使用幼稚的贝叶斯分类和随机森林(RF)分类算法进行数据集的分类。结果表明,三种疾病的RF模型的准确性高于幼稚贝叶斯分类器的精度值。[12] Das等。使用统计分析系统,引入了一种诊断心脏病的方法。神经网络集合方法位于提议系统的中心。从从克利夫兰心脏病数据库中获得的数据中获得的分类准确性为89.01%。另外,在心脏病的诊断中分别获得了80.95%和95.91%的敏感性和特异性。[14] Dutta等。[13] Olaniyi和Oyedotun提出了一个基于人工神经网络(ANN)的三步模型来诊断心绞痛,其精度为88.89%。提出了具有卷积层的有效神经网络。他们提出的模型在预测冠心病方面的准确性达到了77%。该模型还能够比传统方法(例如支持向量机(SVM)和RFS)更准确地预测负面案例。[15]
16a农业扩展或农村发展16B经济学的基本原理17A糖,烟草和饲料作物或17B灌溉水管理,农业系统和可持续农业18A肥料,肥料和土壤肥料管理,土壤生育管理或18B的生产技术,用于原产地和芳有贸易的贸易,药物和芳有疾病的贸易型和侵害的环境研究或19B农村或19B农业或19B的管理或19B的管理或19B的管理或19b 20B Crop Improvement - I(Cereals, Millets, Pulses and Oilseeds) and Intellectual PropertyRights 21A Problematic Soils and their Management OR 21B Protected Cultivation and Post-harvest technologies 22A Pests of Field crops and Stored Grain and their Management OR 22B Farm Management, Production and Resource Economics 23A Diseases of Field and Horticultural Crops and their Management – II
行为源自多个在解剖学和功能上不同的大脑区域的协调活动 1,2 。现代实验工具 3–5 使我们能够前所未有地接触大量神经群,甚至是横跨全脑许多相互作用区域的神经群 2 。然而,要理解如此大规模的数据集,不仅需要稳健、可扩展的计算模型来提取区域间通信的有意义特征,还需要原则性理论来解释这些特征。在这里,我们介绍了基于电流的分解 (CURBD),这是一种使用数据约束的循环神经网络模型 6 推断全脑相互作用的方法,该模型一旦经过训练,就会自主产生与实验获得的神经数据一致的动态。CURBD 利用从这些模型推断出的功能相互作用来同时揭示多个大脑区域之间的定向电流。我们首先表明,CURBD 可以在具有已知连接和动态的模拟真实网络中准确地隔离区域间电流。然后,我们将 CURBD 应用于从广泛的神经数据集(斑马鱼幼虫 7 、小鼠 8 、猕猴 9 和人类 10 )获得的多区域神经记录,以证明 CURBD 在解开全脑相互作用和行为背后的区域间通信原理方面的广泛适用性。
患有脊髓损伤/脊髓损伤的退伍军人在日常生活中面临重大障碍,包括行动不便、慢性疼痛和一系列继发性健康问题,对他们的独立性和生活质量产生不利影响。尽管医学科学和康复护理取得了进展,但现有的干预措施不足以完全解决这些多方面的挑战。我们必须探索和投资创新技术,为恢复我国退伍军人的自主权提供新的可能性。
lizzie blythe lizzie.bly@ederalab.co.uk初级客户经理+44(0)20 805 850 18 Sam Salzman sam.salzman@ederalab.co.uk.co.uk International PR Executive +44(0)7848 698 867
大气数值模型和再分析为各种应用生成了宝贵的天气和气候信息。其中,农业从所提供的数据中获得了相当大的附加值。这些数据允许创建情景和/或集合,以评估源自气候和植物生产方面的复合不确定性。在这项工作中,我们使用两种大气产品和 AquaCrop 模型来研究 2015 年夏季波河谷农业生产对气候条件以及作物类型和灌溉方法的影响和敏感性。这两个产品是一组使用天气研究和预报 (WRF-ARW) 模型的 3 公里分辨率免费模拟,用作灌溉用水需求的情景,以及 6 公里 COSMO-REA6 再分析,提供大气参考数据集。AquaCrop 模型仅强制使用波河谷的农田网格点,我们测试了作物模型对初始土壤水分、灌溉管理、土壤和作物类型等参数的敏感性。初步结果表明,对于小麦而言,产量反应取决于气象输入数据,COSMO-REA6 产量高于 WRF-ARW 产量,并且取决于土壤中的粘土含量。此外,AquaCrop 输出的物理集合(每日水通量、土壤水分和作物产量)将与哥白尼 2015 年的季节性预报产品进行比较
人们对由相对少量相互作用的神经元组成的各种集合和大型神经形态系统进行了研究 [1±6]。在《Physics Uspekhi》中,许多综述介绍了使用非线性物理方法研究大脑和神经集合中的动态过程的相关主题 [7±18]。最近,对工作大脑的认知和功能特性进行建模已经成为神经动力学的前沿 [19±21]。尤其是,人们对这一主题越来越感兴趣,这与创建能够重现自然智能关键特性的人工智能系统有关 [22, 23]。为了解决这类问题,有必要建立新的动态模型,这些模型首先可以重现复杂的层次组织,其次可以重现神经元结构的可塑性,因为它们的组成以及结构之间和结构内的连接会根据信息输入的存在与否而变化。迄今为止,已经开发出两种动态建模方法 [24, 25]。其中一种方法是所谓的自上而下的方法,模型采用大脑活动模式——模拟大脑高级过程的积分变量 [20]。另一种方法自下而上,对于可以重现大脑高级功能的神经结构模型,首先,基于对神经元和结构之间连接的真实描述,建立单个神经元的模型 [25, 26]。显然,这两种方法的生物学相关模型都应该基于实验数据。在神经生理学家对大脑进行的实验研究中,神经元的活动是在受试者休息时或受试者执行某项任务时记录的。基于实验数据的模型可以通过两种方式开发。第一种是数据驱动建模,即重建一个动态系统,该系统产生的时间序列在数量上接近实验记录的时间序列。第二种方式是基于所考虑的行为问题建模,即
本综述探讨了自然语言处理 (NLP) 和人工智能 (AI) 的集成,以增强实时分析的数据可视化。在数据呈指数增长的时代,传统的静态可视化越来越不能满足实时决策的需求。NLP 和 AI 提供了复杂的工具来动态解释和可视化数据,将大量原始信息转化为各个领域的可操作见解。本文综合了 NLP 和 AI 在数据可视化方面的当前研究、方法和应用,重点介绍了关键进展,例如增强的数据可解释性、实时数据处理能力以及通过自然语言查询和交互元素改善的用户交互。它还解决了实施这些技术所面临的挑战和局限性,包括计算复杂性、数据质量问题和道德考虑。本综述确定了重要的趋势和未来方向,例如增强现实和虚拟现实 (AR/VR) 的集成以及生成式 AI 模型的使用,这些趋势和方向有望进一步推动该领域的发展。通过全面概述数据可视化中 NLP 和 AI 的现状,本文旨在为未来的研究和开发工作提供参考和指导,以利用这些技术实现更有效、更高效的数据驱动决策。
点云经常包含噪声和异常值,为下游应用带来障碍。在本文中,我们介绍了一种新颖的点云去噪方法。通过利用潜在空间,我们明确地发现噪声成分,从而可以提取干净的潜在代码。这反过来又有助于通过逆变换恢复干净点。我们网络中的一个关键组件是一个新的多层图卷积网络,用于捕获从局部到全局各个尺度的丰富几何结构特征。然后将这些特征集成到可逆神经网络中,该网络双射映射潜在空间,以指导噪声解缠结过程。此外,我们使用可逆单调算子来模拟变换过程,有效地增强了集成几何特征的表示。这种增强使我们的网络能够通过将噪声因素和潜在代码中的内在干净点投影到单独的通道上来精确区分它们。定性和定量评估均表明,我们的方法在各种噪声水平下都优于最先进的方法。源代码可在 https://github.com/yanbiao1/PD-LTS 获得。
对大脑神经活动进行多通道电记录是一种越来越有效的方法,它揭示了神经通信、计算和假肢的新方面。然而,虽然传统电子产品中平面硅基 CMOS 器件的规模迅速扩大,但神经接口器件却未能跟上步伐。在这里,我们提出了一种将硅基芯片与三维微线阵列连接起来的新策略,为快速发展的电子产品和高密度神经接口提供连接。该系统由一束微线组成,这些微线与大规模微电极阵列(如相机芯片)配对。该系统具有出色的记录性能,通过在清醒运动小鼠的孤立视网膜和运动皮层或纹状体中进行的单个单元和局部场电位记录得到了证明。模块化设计使各种类型和尺寸的微线能够与不同类型的像素阵列集成,将商业多路复用、数字化和数据采集硬件的快速发展与三维神经接口连接在一起。