通过传统育种将新特性引入作物通常需要几十年的时间,但最近开发的基因组序列修饰技术有可能加速这一过程。这些新育种技术之一依赖于 RNA 指导的 DNA 核酸酶 (CRISPR/Cas9) 在体内切割基因组 DNA,以促进序列的删除或插入。这种序列特异性靶向由向导 RNA (gRNA) 决定。然而,选择最佳 gRNA 序列有其挑战。几乎所有当前用于植物的 gRNA 设计工具都是基于动物实验数据,尽管许多工具允许使用植物基因组来识别潜在的脱靶位点。在这里,我们检查了八种不同的在线 gRNA 位点工具的预测一致性和性能。不幸的是,不同算法的排名之间几乎没有共识,排名与体内有效性之间也没有统计学上显着的相关性。这表明,影响植物中 gRNA 性能和/或靶位点可及性的重要因素尚未阐明并纳入 gRNA 位点预测工具中。
本文不涉及仅作为辅助创造过程工具的人工智能系统(例如,用于模拟产品压力测试的复杂计算机程序),因为当计算机技术仅协助人类发明者时,无需解决专利性问题。本文也不涉及人工智能在发明过程中执行了更重要部分,但人类贡献了一些发明或发现功能的发明。相反,本文关注的是人工智能机器的新颖发明没有显著的人类输入,也就是说,人工智能生成的发明没有人能如实地说“这是我的新颖想法”。这些发明会产生法律问题,因此本文仅讨论“创造性人工智能”,它有两个关键特征:(i)它是自学的,这意味着它执行某些功能的能力会随着时间的推移而提高;(ii)它独立于人类用户进行评估和决策。56
摘要:起落架是飞机的重要组成部分。然而,起落架的部件在其使用寿命内容易退化,这可能导致起飞和降落时出现摆振效应。为了减少意外航班中断并提高飞机的可用性,本研究研究了预测性维护 (PdM) 技术。本文介绍了一个案例研究,该研究基于当前在役飞机的预测和健康管理 (PHM) 框架实施剩余使用寿命 (RUL) 的健康评估和预测工作流程,这可能对机队运营商和飞机维护产生重大影响。机器学习用于使用数据驱动方法开发起落架的健康指标 (HI),而时间序列分析 (TSA) 用于预测其退化。使用来自在役飞机的大量真实传感器数据评估退化模型。最后,概述了为下一代飞机实施内置 PHM 系统的挑战。
最近,对不同深度神经网络(DNNS)架构的平行杂交模型的持续发展,越来越多的兴趣激增,以保持有用寿命(RUL)估计。在这方面,本文在文献中的第一次介绍了一种新的基于Hybrid DNN的框架,用于RUL估算,称为嘈杂的多径平行混合模型,用于剩余有用的寿命估计(NMPM)。提议的NMPM框架是三个平行路径的编写,第一个使用了一个嘈杂的双向长短术语记忆(BLSTM),用于提取时间特征并学习在两个方向,正向和后门中学习序列数据的依赖。第二个平行路径采用嘈杂的多层感知器(MLP),由三层组成以提取不同特征类别的层。第三个平行路径利用嘈杂的卷积神经网络(CNN)来提取特征的组成类。然后将三个平行路径的串联输出送入嘈杂的融合中心(NFC)以预测RLU。提出的NMPM已根据嘈杂的训练机制进行了培训,以增强其泛化行为,并增强模型的整体准确性和鲁棒性。使用NASA提供的CMAPS数据集对NMPM框架进行了测试和评估,该数据集说明了卓越的性能与最先进的对应物相比。
对于锂离子(锂离子)电池,诸如材料老化和容量衰减之类的问题会导致电池性能降解甚至灾难性事件。预测剩余的使用寿命(RUL)是指示锂离子电池健康的有效方法,这有助于提高电池动力系统的可靠性和安全性。我们提出了一个新型的神经网络Attmoe,该网络将注意力机制与专家(MOE)的混合物结合在一起,以捕获电池RUL预测的容量淡出趋势。面对从传感器收集的原始数据始终充满噪音的问题时,Attmoe使用辍学掩码来代替原始数据。为了进行RUL预测,一个关键思想是,注意机制捕获了序列中的元素和更多注意力之间的长期依赖性,这是对包含更多降级信息的重要特征。另一个关键思想是,MoE使用许多专家来提高模型能力以实现更好的表示。最后,我们使用两个公共数据集进行了实验,以表明ATTMOE在RUL预测中有效,并且在相对误差方面提高了10%–20%。我们的项目都是开源的,可在https://github.com/xiuzezhou/rul上找到。
如今,基于状态的维护 (CBM) [1] 是制造业越来越多地尝试采用的一种维护策略,目的是降低设备单元的生命周期成本并延长其可用性。CBM 使用实时信息通过恢复设备单元的功能特性来优化维护时机。它基于设备单元的当前健康监测,因此添加预测工具来预测未来状态和预测维护非常重要。故障预测是 CBM 的主要任务之一。它根据状态监测信息估计设备单元的 RUL。通常,预测方法可以根据所用信息的类型分为三大类。这些类别 [2]、[3] 被定义为基于物理模型的方法、数据驱动的方法和基于融合的方法。基于物理模型的方法 [4] 使用显式数学模型来表示动态系统的退化。数据驱动的方法基于状态监测,
我们可以想到给我们的青少年提供丰富的社会和情感支持饮食,并且饮食需要包含合适的成分,丹·西格尔博士建议所有青少年都平衡了他所描述的本质,以创造健康的社交和情感成长的正确食谱。每周我们将继续关注本质的要素,以及情感健康和福祉的要素,以描述我们与自己和他人以及他人以及我们如何解释周围世界的思维,感觉和联系。
本论文由默里州立大学数字共享中心的学生作品免费开放给您。默里州立大学数字共享中心的授权管理员已接受本论文,将其纳入荣誉学院论文。如需更多信息,请联系 msu.digitalcommons@murraystate.edu 。
摘要:在这项研究中,我们引入了一种新型的基于变压器的神经网络(DTNN)模型,用于预测锂离子电池的剩余使用寿命(RUL)。所提出的DTNN模型在准确性和可靠性方面显着优于传统的机器学习模型和其他深度学习档案。特别是,DTNN达到0.991的R 2值,平均百分比误差(MAPE)为0.632%,绝对RUL误差为3.2,比其他模型(例如随机森林(RF),决策树(DT),多层perceptron(MLP),REN NERTEN(RN),REN NERTIAL NERTIST(RN NERTIRER NERTIAL(RN))(RN)(rn)(RF)(RF)(RN)(RNN)(RNN)(RNN)(RNN NEFT)(RN NORN NERTER),RNN NOVERRENT NERTER,长期(RN)复发单元(GRU),Dual-LSTM和Decransformer。这些结果突出了DTNN模型在为电池RUL提供精确可靠的预测方面的效率,这使其成为各种应用中电池管理系统的有前途的工具。