摘要 生命科学领域的最新技术进步极大地提高了我们以前所未有的深度在分子水平上解决科学问题的能力。自推出以来,下一代测序 (NGS) 实现了高通量分析,随着时间的推移,变得越来越普及和负担得起,塑造了研究和临床应用的未来。空间分辨转录组学 (SRT),特别是原位测序 (ISS),提供单细胞转录组数据,同时保留周围组织微环境的组织病理学背景。本论文探讨了挂锁探针与原位测序 (ISS) 或下一代测序 (NGS) 结合的应用,以解决与特定疾病相关的问题。在论文 I 中,我们研究了结核分枝杆菌 (Mtb) 与结核病感染小鼠肺中免疫细胞之间的空间相互作用,绘制了细菌簇和单个细菌附近的免疫相关转录本。我们的研究结果表明,在 Mtb 抗性的 C57BL/6 小鼠中,靠近单个细菌的巨噬细胞活化。相比之下,在易感染结核分枝杆菌的 C3HeB/FeJ 小鼠的肺组织中占主导地位的组织化肉芽肿未富集免疫激活转录本。这种方法提供了对结核病免疫反应的见解,并强调了空间分辨转录组学在研究宿主-病原体相互作用方面的能力。在论文 II 中,我们研究了非小细胞肺癌 (NSCLC) 中的肿瘤微环境,重点研究了 T 细胞克隆性的影响。我们将 TCR 克隆性与基因突变、肿瘤免疫特征和对免疫疗法的反应联系起来。我们的数据显示,高 TCR 克隆性与高肿瘤突变负担、发炎的肿瘤表型以及对检查点抑制剂的反应改善有关,这表明其有可能成为 NSCLC 个性化免疫治疗的生物标志物。在论文 III 中,我们在空间上探索了新辅助治疗期间选定的 NSCLC 组织中的 TCR 模式和免疫细胞分布,这些组织具有匹配的未受影响的淋巴结,以及 HER2+ 乳腺癌病例。我们注意到,与匹配的淋巴结相比,癌症组织中的 TCR 多样性较低。我们的数据进一步揭示了扩增克隆型(主要是 CD8 T 细胞)的区域优势,这些克隆型位于靠近癌症区。总体而言,这些结果证明了 ISS 在提供诊断组织样本中肿瘤免疫微环境中克隆 T 细胞扩增之间相互作用的关键空间细节方面的实用性,特别是在治疗环境中。在论文 IV 中,我们开发了一种基于分子倒置探针 (MIP) 的经济高效的检测血液样本中微生物病原体和抗菌素耐药性标志物的检测方法,即使在资源匮乏的环境中也能提供高特异性和灵敏度。MIP 方法简化了病原体检测,无需进行大量的样品制备或生物信息学分析,使其成为资源匮乏地区监测传染病的便捷工具。总的来说,这项工作展示了挂锁探针和先进技术的应用,以加深我们对疾病的了解并改善诊断和个性化治疗。
UVcNQgUV‡dU}FWQgR Ufege~~m£²nNbdKaFWUf‡de~O eSU«~VO PWK i&ØdJVP FIMNQSK R UfeSRzndegUfFIQgJVb Q~FGQSK U;KIKInNH O c FIMdUfF]FIMdO`H Q~ž?QgbN≠†PWUfFIQgJ Jf€'FWMNO_UVQ~P LdUfPXRzO e,UfF
抽象课程推荐系统可以通过利用用户交互数据来帮助学生识别合适或有吸引力的课程,这显示了用户和课程之间以前的参与。但是,现有课程推荐系统的普遍问题是它们倾向于优先考虑准确性而不是解释性。这些复杂模型的“黑框”性质提出了一个挑战:准确表征和建模用户的偏好,同时还提供明确的,具有预性和可解释的用户配置文件。为了解决这种限制,我们为课程推荐提出了一个新颖的知识实体感知模型,该模型称为KEAM,该模型基于知识图的详细信息支持明确的用户个人资料生成,以增强学生对建议背后的理由的理解。具体来说,我们利用知识图中编码的信息,通过更换隐藏单元来使用神经网络之间建立单位之间的连接。接下来,对模型进行了培训,可以捕获学生的偏好并创建用户配置文件,以提供可解释的建议。在两个现实世界的在线数据集上进行了全面的实验,以评估所提出的模型的有效性和解释。
心率 (HR) 是人体健康的重要生理指标,可用于检测心血管疾病。传统的 HR 估计方法,例如心电图 (ECG) 和光电容积描记器,需要皮肤接触。由于皮肤接触会增加病毒感染的风险,在正在发生的 COVID-19 大流行中避免使用这些方法。或者,可以使用非接触式 HR 估计技术,即远程光电容积描记器 (rPPG),其中 HR 是根据人的面部视频估计的。不幸的是,现有的 rPPG 方法在面部变形的情况下表现不佳。最近,用于 rPPG 的深度学习网络激增。然而,这些网络需要大规模标记数据才能更好地泛化。为了缓解这些缺点,我们提出了一种方法 ALPINE,即一种新的 L r P PG 技术,用于使用对比学习来改进远程心率估计。 ALPINE 在训练过程中利用对比学习框架来解决标记数据有限的问题,并在数据样本中引入多样性以实现更好的网络泛化。此外,我们引入了一种新颖的混合损失,包括对比损失、信噪比 (SNR) 损失和数据保真度损失。我们的新颖对比损失最大化了来自不同面部区域的 rPPG 信息之间的相似性,从而最大限度地减少了局部噪声的影响。SNR 损失提高了时间信号的质量,数据保真度损失确保提取正确的 rPPG 信号。我们在公开数据集上进行的大量实验表明,所提出的方法 ALPINE 优于以前众所周知的 rPPG 方法。
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
如何引用这篇文章 - 美国心理学会 (APA) Santos, GC, Barboza, F., Veiga, ACP, & Gomes, K 。 (2024 年 7 月/9 月)。利用人工智能进行投资组合优化
摘要 - 手动跟踪教室出勤,这是一种备受推崇的传统方法,由于其对错误和效率低下的敏感性而提出了重大挑战。这些限制不仅消耗了宝贵的教师时间,而且损害了学术记录的准确性,从而影响了学生参与和表现的评估。回答这个问题,我们提出了一种使用基于机器学习的识别系统自动化课堂出勤的方法。这项研究旨在提高教育环境中出勤跟踪的准确性,效率和可靠性。我们研究的核心在于系统的设计和实施,阐明体系结构,数据流和集成到课堂环境中。我们的分析结果表明该系统可以跟踪出勤率的能力,同时提供有关其性能指标的准确信息。我们还深入研究了在课堂上实施此类技术的道德和实际考虑。通过使用基于机器学习的识别来自动化该过程,教育机构可以提高其运行效率,降低错误,并最终提供更有生产力的学习环境。我们的研究为教育研究和技术进步的未来途径打开了大门。关键字 - 自动出勤,出勤跟踪,面部识别,机器学习,课堂技术
摘要。本研究介绍了一种称为基于项目的学习 (PBL) 的主动学习方法,用于在本科工程学位的计算机视觉课程中开发人工智能 (AI)。该课程的目标是使用深度学习 (DL)/机器学习 (ML) 技术在实际问题中开发图像识别能力。PBL 学习方法帮助学生寻找现实世界的问题,开发复杂的解决方案,并在团队成员之间产生协同效应。教授的主要作用是在整个课程中为学生提供建议、指导和激励。主动学习方法的教学创新为教授提供了根据经验创建动态激励学习环境的机会。每个本科工程专业的学生都有机会发展他们的专业技能和技巧:团队合作、主动性、创新和领导力。学生团队取得的成果表明了解决问题的能力,包括使用带有人工智能的自动导航设备、检测疟疾寄生虫、识别非人类个体以控制车辆交通。