摘要。我们考虑了一个空间扩展的Fitzhugh-Nagumo神经网络的中镜模型,并证明在短程相互作用主导的政权中,整个网络中潜力的概率密度集中在狄拉克分布中,其质量中心的质量中心溶解了经典的非宽松反应反应fitzhughugh-usion fitzhugh-nagugh-nagumo fitzhugh-nagumo System。为了重新理解我们对这种制度的理解,我们着重于这种集中现象的爆炸。我们的主要目的是得出两个定量和强的收敛估计,证明了该文件是高斯:L 1功能框架中的第一个,第二个是加权L 2功能设置中的第二个。我们开发了原始的相对熵技术来证明第一个结果,而第二个结果依赖于规律性的传播。
摘要。流量匹配(FM)(也称为随机插值或矩形流)是一类生成模型,旨在用辅助分布µ桥接目标分布ν⋆,并利用固定的构建的couplingπ和一个可以确定的桥式或stico的桥梁。这两种成分定义了路径度量,然后通过学习其马尔可夫投影的漂移来近似。本文的主要贡献是在ν⋆,µ和π上提供相对温和的假设,以获得非轴注剂的保证,以保证使用与布朗尼运动相关的条件分布,以进行分解流量匹配(DFM)模型。更确切地说,我们在目标分布与此类DFM模型在时间条件下产生的kullback-leibler差异建立了界限,并在ν⋆,µ和π的得分上以及标准的L 2-Drift-Drift-Approximation误差假设。
为了人类的运气,与小型太阳能相比,太阳能较小。即使这些是个好消息,这也使训练能够建模太阳能活动的机器学习算法具有挑战性。因此,太阳能监视应用程序(包括量)是预测的,因此由于缺乏输入数据而征服。为了克服这个问题,可以利用生成深度学习模型来产生代表太阳活动的合成图像,从而补偿大事件的稀有性。本研究旨在开发一种可以生成太阳的合成图像,具有特定强度的能力。为了实现我们的目标,我们引入了一个脱氧概率模型(DDPM)。我们用SDO航天器上大气图像组件(AIA)仪器进行了精心制作的数据集训练它,该仪器特别是171Å带,该乐队捕获了冠状环,纤维,纤维,浮雕和活动区域的图像。使用Heliophysics事件知识库选择了来自AIA的浮动图像后,采用X射线测量来基于太阳量(a,b,c,m,x)对每个图像进行分类,从而允许对漏水事件进行时间定位。使用群集指标,FRéchetInception距离(FID)和F1分数评估生成模型性能。我们演示了最新的结果,可以产生太阳图像并进行两个使用合成图像的实验。第一个实验训练有监督的分类器以识别这些事件。第二个实验训练基本太阳能是预测指标。我们认为,这只是DDPM与太阳能数据使用的开始。实验证明了其他合成样本对解决不平衡数据集问题的有效性。仍然可以更好地了解太阳能竞赛中的DINOISING DI遇到的概率模型的发电能力是预测,并将其应用于其他深度学习和物理任务,例如AIA到HMI()图像翻译。
基于深度学习的卷积神经网络最近已证明其能够基于弥散加权成像快速分割主要脑束结构。脑束的定量分析则依赖于来自纤维束成像过程本身或束上每个体素的指标。在疾病的背景下,对异常体素的统计检测通常依赖于单变量和多变量统计模型,例如一般线性模型 (GLM)。然而,在高维低样本量数据的情况下,尽管通常使用平滑过程,但由于解剖学差异,GLM 通常意味着对照的标准差范围较大。这可能导致难以在体素尺度上检测到脑束中细微的定量变化。在这里,我们介绍了 TractLearn,这是一个使用测地线学习作为数据驱动学习任务的脑束定量分析统一框架。 TractLearn 允许使用黎曼方法在图像高维域和脑束的减少潜在空间之间进行映射。我们通过重测采集多壳扩散 MRI 数据说明了该方法对健康人群的稳健性,表明可以分别研究不同 MRI 会话导致的整体影响和局部束改变的影响。然后,我们在 5 名年龄匹配的轻度脑外伤受试者样本上测试了我们算法的效率。我们的贡献是提出:1/ 一种捕捉控制变异性的流形方法作为标准参考,而不是基于欧几里得均值的图谱方法。2/ 一种检测体素定量值整体变化的工具,它考虑了结构中体素的相互作用,而不是独立分析体素。3/ 一种即用型算法,用于突出显示扩散 MRI 指标的非线性变化。在这方面,TractLearn 是一个可立即使用的精准医疗算法。
相关性模块在电子商务搜索中起着基本作用,因为他们负责根据用户查询从数千个项目中选择相关产品,从而增强用户的体验和效率。传统方法根据产品标题和用户查询来计算相关性得分,但是单独的标题中的信息可能不足以完全删除产品。一种更通用的方法是进一步利用产品图像信息。近年来,视觉语言预训练模型在许多情况下都实现了令人印象深刻的恢复,这些模型将构图的研究利用将文本和vi-sual特征映射到关节嵌入空间中。在电子商务中,一种常见的做法是根据预先训练的模型,使用电子商务数据进一步微调模型。但是,性能是最佳的,因为视觉语言预训练模型缺乏专门为查询设计的一致性。在此过程中,我们提出了Q uery-a an an a an an a a a guage i mage f usion e mbedding,以应对这些挑战(Query-Life)。它利用基于查询的mul-timodal融合来根据产品类型有效地合并图像和标题。在方面,它采用查询感知的模态对准来增强产品的全面表示的准确性。此外,我们设计了Genfilt,它利用大型模型的发电能力过滤出虚假的负样本,并进一步改善模型中对比度学习任务的整体性能。实验表明,查询寿命的表现优于现有基准。我们进行了消融研究和人类评估,以验证查询寿命内每个模块的效率。此外,查询生活已在Miravia搜索1
多个方面正在加速取得重大突破 在我们的 2021 年报告中,我们强调了欧洲深度科技的巨大潜力。事实上,欧洲深度科技度过了最好的一年,获得了超过 220 亿美元的融资,并以 10 亿美元的价格退出。从那时起,我们还看到量子计算(第一个 100+ 量子比特处理器和硅基设备中近乎无误差的量子计算得到验证)、核聚变(产生的能量几乎是记录的三倍)、空间技术(Starlink 为乌克兰提供互联网覆盖、詹姆斯韦伯太空望远镜、新的登月任务)、生成性人工智能(Dall-E 转向商业用途、稳定扩散文本到图像生成性人工智能发布、ChatGPT 在 5 天内覆盖 100 万用户)等关键领域取得了巨大突破等等。
多个方面正在加速取得重大突破 在我们的 2021 年报告中,我们强调了欧洲深度科技的巨大潜力。事实上,欧洲深度科技度过了最好的一年,获得了超过 220 亿美元的融资,并获得了数十亿美元的退出。从那时起,我们还看到量子计算(第一个 100+ 量子比特处理器和硅基设备中近乎无误差的量子计算得到验证)、核聚变(产生的能量几乎是记录的三倍)、空间技术(Starlink 为乌克兰提供互联网覆盖、詹姆斯韦伯太空望远镜、新的登月任务)、生成性人工智能(Dall-E 转向商业用途、稳定扩散文本到图像生成性人工智能发布、ChatGPT 在 5 天内覆盖 100 万用户)等关键领域取得了巨大突破等等。
生物质衍生化学品的氢化对于生产生物燃料和增值化学品具有重要意义。生物质还原的热化学过程通常使用氢气作为还原剂,在高温和高压下进行。本文,作者研究了 5-羟甲基糠醛 (HMF) 直接通电还原为生物聚合物前体 2,5-双(羟甲基)呋喃 (BHMF)。注意到先前关于这种转化的报告中电流密度有限,因此研究了一种由三元金属纳米树枝状晶体与阳离子离聚物混合而成的混合催化剂,后者旨在提高局部 pH 值并促进表面质子扩散。该方法在使用专为 p-d 轨道杂化设计的 Ga 掺杂 Ag-Cu 电催化剂实施时,可控制对 BHMF 的选择性,在 100 mA cm −2 时实现 58% 的法拉第效率 (FE) 和 1 mmol cm −2 h −1 的生产速率,后者的速率与之前最好的报告相比翻了一番。
我们报告说,尽管3C - SIC高度有缺陷,但在3C-SIC 12,14上使用Ni/Cu BiLayer在大尺度上均能使用均匀的石墨烯,而不是3C - SIC的调用热分解途径。17镍与SIC形成镍硅的催化反应和释放原子碳的催化反应,并结合铜分布在大面积上释放的碳并促进其绘画的催化反应,尽管伴有高度有缺陷的性质性质,但仍可以连续地石墨烯覆盖。12尤其是,我们将这种改进归因于该系统在1100°C下的液相外观生长18 - 20条规范,与通过3C - SIC的3C热分解相比,碳原子具有更长的二次分解长度。12