单眼深度估计在近年来,由于深度学习的进步,近年来在陆地图像上取得了重大进展。,但主要是由于数据稀缺性而导致的水下场景不足。鉴于水中的光衰减和背面的固有挑战,获得清晰的水下图像或精确的深度非常困难且昂贵。为了减轻此问题,基于学习的方法通常依赖于综合数据或转向自欺欺人或无监督的举止。尽管如此,它们的性能通常受到域间隙和宽松的约束而阻碍。在本文中,我们提出了一种新的管道,用于使用准确陆地深度生成感性的水下图像。这种方法有助于对水下深度估计的模型进行超级培训,从而有效地降低了限制和水下环境之间的性能差异。与以前的合成数据集相反,这些数据集仅将样式转移应用于没有场景内容的情况下的Terres试验图像,我们的方法通过通过创新的STA-
反垄断专家和经济学家广泛讨论了通过使用定价算法来稳定合谋协议的前景。然而,这些文献往往缺乏计算机科学家的视角,而且似乎经常高估机器学习的最新进展对企业在形成卡特尔时面临的复杂协调问题的适用性。同样,支持学习算法合谋可能性的建模结果通常使用简单的市场模拟,这使得他们可以使用简单的算法,而这些算法不会产生机器学习从业者在现实问题中必须处理的许多问题,这些问题可能对学习合谋协议特别有害。在批判性地审查了有关算法合谋的文献并将其与计算机科学的结果联系起来后,我们发现,虽然调整反垄断法以处理真实市场中合谋的自学习算法可能为时过早,但其他形式的算法合谋,例如由集中定价算法促进的轮辐式安排,可能已经需要立法行动。
在哈马德·本·哈利法大学组织的一场小组讨论中,有人提出了一个问题:人工智能是否真的可以创造艺术?此次活动由哈马德·本·哈利法大学科学与工程学院和人文与社会科学学院翻译与口译学院组织。活动由两场小组讨论组成,邀请了来自卡塔尔消防局驻地艺术家和 Mada 中心的主讲嘉宾。第二场小组讨论特别探讨了人工智能如何改变残疾人士的艺术体验和参与。小组通过案例研究展示了残疾人士如何利用人工智能来塑造他们对当代艺术形式的体验和概念。从而确定了人工智能可能对艺术感知和包容性带来的挑战和机遇。
摘要。通过互补感应方式整合各种表示形式对于自主驾驶中的强大场景解释至关重要。近年来,融合视觉和范围数据的深度学习体系结构具有先进的2D和3D对象检测。但是,这些方式在不利的天气或照明条件下通常会降解,从而导致性能下降。虽然已经开发了域适应性甲基元素来弥合源域和目标域之间的缝隙,但由于源和目标域之间的固有差异,它们通常会缺乏。此差异可以在数据的不同分布和不同特征空间的不同分布中表现出来。本文介绍了一个全面的域自适应对象检测框架。通过深度转移学习开发,该框架旨在从标记的透明天气数据中稳健地概括到无标记的不良天气条件,从而增强了基于深度学习的对象检测模型的性能。创新的斑块熵融合模块(PEFM)是我们方法的核心,该方法动态整合了sens-sor数据,强调关键信息并最大程度地减少了背景干扰。这进一步补充了一种新型的加权决策模块(WDM),该模块(WDM)根据其在特定环境条件下的功效来调整不同传感器的贡献,从而优化了检测准确性。此外,我们在转移学习过程中集成了域对齐损失,以确保有效的域适应性通过将特征图差异定于清晰和不利天气数据集之间的差异。我们评估了不同数据集的模型,包括Exdark(单峰),CityScapes(单峰)和密集(Mul-timodal),在我们评估的时间点,它在所有数据集中排在所有数据集中。
扩展数据图 1. 使用 RFdiffusion 设计 β 链配对支架。为了充分利用 RFdiffusion 的多样化生成潜力,同时鼓励在设计输出中使用 β 链界面,我们实现了一种界面调节算法,该算法可根据简单的用户输入生成 SS/ADJ 调节张量。该模型以张量的形式理解折叠调节,这些张量标记每个残基(a,顶部和左侧)的二级结构(蓝色)以及这些二级结构块的邻接关系(a,黄色中心)。用户指定的参数指定了以下信息:结合剂界面二级结构块(在本例中为 β 链)、该块的长度(b,结合剂张量 L 中的青色块)以及结合剂块相邻的靶位残基(b,靶位张量 T 中的青色块)。根据这些预定义参数,该算法随机采样结合剂界面二级结构块在残基索引空间中的位置,同时保持与指定靶位残基的确定邻接关系(绿色)。该用户定义的调节张量将扩散输出导向β链配对的结合物-靶标界面 (c)。此前,RFdiffusion 界面设计计算可以针对指定为靶标“热点”的特定残基,以指定要结合的靶标残基。而这种新的链间 SS/ADJ 调节功能,使用户能够在结合物支架生成过程中指定“β链热点”或“ɑ-螺旋热点”。基于扩展的结合物-靶标 SS/ADJ 张量调节的结合物支架输出,支持用户指定 β 链界面类型的设计。
根据 JDL 数据融合组过程模型,在 0、1、2 和 2+/3 级进行数据和信息融合。为了支持多传感器 IMINT 和 GMTI 融合和 3D 可视化,我们构建了阿拉巴马州莫比尔码头和周边地区的 3D 站点模型,该模型允许使用我们现有的图像挖掘工具进行搜索,并提供 COP 环境,可以在其中模拟和可视化场景。我们开发了用于模拟交通和编写单个车辆移动脚本的软件,以支持场景创建。我们探索了几个新概念来支持 2+/3 级的更高级别的信息融合。一种方法源于对动态脉冲信息网络及其同步形式的神经处理的洞察。这些网络可以以关系和学习到的关联的形式绑定数据和语义知识。我们证明了使用这些网络在移动数据集中学习动态城市场景中移动车辆之间的简单关联的可行性。第二种方法涉及从图像和/或文本数据中提取知识结构。我们开发了两种从数据集中的概念共现中发现分类法的机制。我们证明了这些方法对融合图像和文本语料库的有效性。最后一种方法利用神经启发机制从移动的跟踪实体中学习正常行为模型。这些模型随后被使用
我们使用2D扩散模型引入了多视图祖传采样(MAS),这是一种3D运动生成的方法,这些方法是根据从野外视频中获得的动作进行训练的。因此,MAS为以前探索了3D数据而稀缺且难以收集的机会为令人兴奋和多样化的运动领域打开了机会。MAS通过同时降低多个2D运动序列来起作用,代表了同一3D运动的不同视图。它通过将单个世代组合到统一的3D序列中,并将其投影回原始视图,从而确保每个扩散步骤中所有视图的共识。我们在2D姿势数据上展示了MAS,从描述了演习篮球运动的视频中获取的数据,节奏的体操在带有球设备的节奏和赛马。在这些域中的每个域中,3D运动捕获都很艰难,但是,MAS生成了多样化和现实的3D序列。不喜欢分数蒸馏方法,该方法通过反复应用小固定来优化每个样品,我们的方法使用了为扩散框架构建的采样过程。正如我们所证明的那样,MAS避免了常见的措施,例如室外采样和模式折叠。https://guytevet.github.io/mas-page/
使用扩散模型进行图像修复通常使用预条件模型(即针对绘画任务进行微调的图像条件模型)或后条件模型(即在推理时重新用于绘画任务的非条件模型)。预条件模型在推理时很快,但训练成本极高。后条件模型不需要任何训练,但在推理过程中很慢,需要多次前向和后向传递才能收敛到理想的解决方案。在这里,我们推导出一种不需要昂贵训练但推理速度很快的方法。为了解决昂贵的推理计算时间,我们在潜在空间而不是图像空间上执行前向-后向融合步骤。这是通过扩散过程中新提出的传播模块解决的。在多个领域进行的实验表明,我们的方法达到或改善了状态
vidaso d-dimer排除ii t m是一种vidas d-dimer排除是一种自动定量测试,用于用于自动定量测试,用于用于VIDAS家族仪器的仪器,用于VIDAS仪器,用于对纤维均纤维纤维降解产品的免疫酶确定(FBRAD)在Fibrin degrad embyatikation intraption instruments in fibrin degration degrad degrad degrad deprad deprad deprad depraption {使用ELFA技术使用人血浆(柠檬酸钠)的血浆(柠檬酸钠)(酶连接ELFA技术(酶联预期使用荧光测定))。vidas d-dimer荧光测定)。vi das d-dimer排除11用于排除用途,以与临床预测的结合结合与临床预测的概率评估模型与概率评估模型进行排除,以排除深静脉血栓形成(DVT),排除了深静脉血栓形成(DVT)和肺动脉植物(PE)的疾病(PE),DE ERMOLISC(PE)(PE)(PENARY DERMARY)(PE)(PERMONE)(PELMORY)(PELMORY)(PELMORY)(PILMORY)(PILMON)或PE。涉嫌
