3D 打印技术 (3DP) 是一种新颖的建筑实践,到 2025 年,该行业的价值将达到 360 亿美元。3 该技术也称为增材制造,利用 3D 数据制造房屋等产品。4 施工过程快速、设计灵活,所需的劳动力和材料极少。它有潜力适应不断增长的人口,让最需要的人负担得起,并且能够抵御发展中国家城市正在发生的气候变化。目前,3DP 公司正在采用模块化。模块化建筑是一种预制施工过程,建筑物在场外工厂以单独的模块建造,然后在现场组装。5 模块化建筑在应对 COVID-19 危机时变得更加普遍。6 它显示出创造可调节、低成本和资源高效的住房的潜力,因为它减少了材料浪费、施工现场的干扰以及建筑物的整体能源使用。 7,8 开发模块化 3D 打印建筑技术 (M3DP) 需要单独 3D 打印房屋模块并在现场组装。它结合了 3DP 房屋的成本效益和现场建造以及可重复使用的
随着交互式数据流的提供量增加,作为物联网 (IoT) 的一部分部署的、可通过远程微服务访问的智能设备和传感器的数量和功能将急剧增加。这为通过在不同工作流配置中互连这些微服务来快速构建新应用程序提供了机会。挑战在于发现所需的微服务,包括来自受信任合作伙伴和更广泛社区的微服务,同时能够在不同的网络条件下稳健运行。本文概述了一种工作流方法,该方法提供可验证的可信服务的去中心化发现和编排,以支持多方操作。该方法基于采用自主主权身份研究的模式,特别是可验证凭证,以隐私保护和安全的方式在同行之间基于服务描述和先前服务使用情况的证明共享信息。这为批准和评估不同服务的质量提供了一个动态的、基于信任的框架。整理这些新的服务描述并与基于向量符号架构 (VSA) 的现有分散式工作流研究相结合,为高效、可信的服务发现提供了增强的语义搜索空间,这对于支持各种新兴的边缘计算环境是必不可少的。设计了一种动态分散式服务发现系统的架构,并通过应用于使用可信对等方报告的异常检测服务经验来确定服务选择的场景来描述。© 2022 Elsevier BV 保留所有权利。
结直肠癌 (CRC) 是全球第二大癌症死亡原因 [1]。为了降低 CRC 相关死亡率,高危人群应接受分层的两阶段筛查流程,包括 (1) 免疫化学粪便潜血检测 (FOBT) 筛查和 (2) 后续结肠镜检查,以发现疾病的早期迹象。尽管事实证明这种黄金标准方法可以降低 CRC 相关死亡率,但其有效性取决于达到 65-80% 以上的筛查覆盖率,而一些高收入国家未能实现这一目标 [2]。例如,在澳大利亚,参与率在过去 5 年中一直稳定在 ~40%,FOBT 阳性患者参与后续结肠镜检查的比例也很低(50 – 70%) [3]。令人担忧的是,CRC 风险最高的边缘群体参与筛查的次数最少。尽管人们努力通过 (a) 大众媒体公共卫生运动、(b) 有针对性的支持计划和 (c) 初级保健参与和卫生系统改进来提高认识,但情况仍然如此 [4]。一些定性研究表明,CRC 筛查的采用和坚持往往受到复杂的心理社会和文化互动的驱动。最重要的是,据报道,与阳性癌症诊断或结肠镜检查的侵入性相关的恐惧、焦虑、耻辱、羞耻或不安是阻碍筛查参与的主要障碍 [4,5]。当存在多因素障碍时,例如时间紧迫或无法进入医疗中心,参与问题会加剧。
摘要:韩国政府已宣布了净零碳排放的目标,重点是可再生能源的扩张。然而,由于基载发电机的循环能力低和可变可再生能源 (VRE) 的可变性,基载发电机的高比例和可变可再生能源 (VRE) 的比例不断增加可能会导致电力系统运行出现问题。为了保持系统可靠性,政府正计划建设抽水蓄能水电站 (PSH),为系统提供灵活性。本研究基于鸭形曲线现象和旋转备用需求的增加,评估了不同类型的 PSH:可调速 PSH (AS-PSH) 和定速 PSH (FS-PSH) 所获得的运营成本节省。在本研究中,考虑到 AS-PSH 和传统发电机的运行特性,使用混合整数规划制定了备用约束机组组合。为了考虑鸭形净负荷环境,通过风力涡轮机和光伏模块的物理模型计算了预计的 VRE 输出数据。非 PSH、FS-PSH 和 AS-PSH 建设方案的运营成本分别为 43,129.38 韩元、40,038.44 韩元和 34,030.46 韩元。造成这一差异的主要因素被确定为 AS-PSH 泵送模式的主要储备。
附录I附录I中的文档是内部编号的。有关附录页码,请参见右下角的页码。Consumer Protection Handbook ǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǤ Ǧͳ Contract Requirements ǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǤ Ǧ͵ͷ ǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥ Ǧ͵ͺ ǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǤ ǦͶͲ ǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥ ǦͶͷ ABP Distributed Generation Disclosure Forms Ȃ ǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǤǤǤ ǦͶͺ Ȃ ǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǤǤǤ Ǧͷʹ (dynamic elements reflect collateral requirement) Ȃ ǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǤǤǤ Ǧͷ (dynamic elements reflect use of Smart Inverter (DG) rebate) Ȃǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥ ǦͲ Ȃ ǥǥǥǥǥǥ ǦͶ ABP Community Solar Disclosure Forms ǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥǥ Ǧͺ (dynamic elements reflect subscription payment构成为公用事业账单信用百分比和未选择的特定社区太阳能项目(动态元素反映了订阅付款,构建为公用事业账单信用额度和特定社区太阳能项目的选择)
量子密钥分发 (QKD) 允许两个合法实体 Alice 和 Bob 共享一组密钥,但可能会被窃听者 Eve 操纵 [1–5]。目前,离散变量 (DV) QKD 已经得到发展,但它在源准备、检测成本和密钥速率方面仍然面临挑战 [6,7]。连续变量 (CV) QKD 是实现 QKD 的另一种方法 [8–13]。它具有实现方便的优势,因为它可以使用多种源,如相干态 [14] 和压缩态 [15]。尽管如此,CVQKD 也面临着实际安全性的威胁 [16–18],原因是设备不完善、技术缺陷和操作不完善 [10,19,20]。例如,Eve 可以通过控制波长相关分束器 (BS) 的透射率来执行波长攻击 [21-23]。校准攻击可以通过修改本振 (LO) 脉冲的形状来实施 [24]。因此,已经提出了多种对策来抵消 LO 校准攻击和波长攻击的影响 [25-27]。在 CVQKD 的实际实现中,相干探测器变得脆弱。目前,在窃听零差探测器中的不完美电子时已经执行了饱和攻击 [2, 28]。它可以用于攻击系统的实际设备,因此它唤醒了实际的安全性,因为相干探测器具有有限线性域,可以通过移动接收到的正交的平均值将其驱动到外部(如果没有被监控)。此外,Eve 可以执行异差检测来测量截获的正交 X 和 P,从而为伪造相干态做准备 [28, 29]。为了抵消这种攻击,我们可以在同差探测器中采用嵌入式可调光滤波器 (AOF),用于实时补偿强接收光功率导致的潜在饱和。基于检测响应的反馈,可以使用支持 AOF 的检测来抵消这种饱和攻击,这是雪崩光电二极管 (APD) 的实际增益调整。
指定者:任何第三方实体(即未批准的供应商)代表批准的供应商与ABP下的最终用途客户进行直接互动。这包括安装人员,营销公司,铅生成器和销售组织。所有指定人员都必须在该计划中注册,并在程序网站(www.illinoisabp.com和www.illinoisshines.com)以及与他们一起工作的批准供应商以及已批准的供应商中列出。注册还需要批准的供应商的同意,并且可以由认可的批准供应商酌情与指定人员合作或IPA或计划管理员撤回批准的供应商,如果发现指定人员已违反了计划指南并已被暂停或已暂停或已终止注册。请参阅第6.9.1节。伊利诺伊州电动局的长期可再生资源采购计划
肿瘤治疗仍是世界级挑战之一。在过去的几十年中,纳米药物递送系统在控制药物释放、降低毒副作用、提高治疗效果方面展现出巨大的潜力。纳米粒子(NPs)的可控性和设计灵活性在生物医学应用的精准药物递送平台的开发中引起了越来越多的关注。肿瘤血管内皮的不完整结构为NPs分布到肿瘤部位提供了可行性,而增强渗透和滞留(EPR)效应是NPs递送到实体肿瘤的主要原理。1然而,纳米药物在肿瘤治疗中尚未取得令人满意的治疗效果,这主要是由于在肿瘤内蓄积不足或渗透性差。 2实体肿瘤具有细胞外基质(ECM)密度高、间质液体压力(IFP)高、血管系统异常、淋巴引流受损等特点,3这些对纳米药物在肿瘤内有效蓄积和渗透构成了巨大的障碍。因此,研究人员致力于调节NPs的粒径、形状、表面物理和化学性质来改变其吸收、分布、代谢和排泄行为,以提高治疗效果。粒径是影响纳米药物递送系统最显著的因素之一,包括NPs的血浆清除率、体内分布、EPR效应、组织扩散以及细胞内化等影响。4许多研究证明,粒径在30至200nm之间的NPs可以通过EPR效应有效到达肿瘤部位,但是在这样的粒径范围内,NPs的保留和渗透能力有很大差异。粒径较小的NPs(<50nm)虽然能够深入肿瘤深层,但是由于细胞流出和回流至外周血管,导致其滞留效果较差。5,6相反,粒径较大的NPs(>100nm)在肿瘤内具有较强的滞留效果,因为它们容易被困在肿瘤细胞间的基质中,不易回流被细胞排泄,但同时这些大颗粒又不能深入肿瘤内部。7,8传统的固定尺寸的NPs很难平衡蓄积和渗透,针对这一问题,研究人员提出了一系列智能调节NPs尺寸的策略,包括尺寸增大策略和尺寸收缩策略。这些策略一般为:
基因的抽象条件表达和表型的观察仍然是生物学发现的核心。当前方法可启用开/关或不确定的分级基因表达。,我们开发了一个“脾气好”的控制器WTC 846,用于精确可调,分级,生长条件在酿酒酵母中基因的独立表达。受控的基因是由核酸脑抑制的强烈半合成启动子表达的,这也抑制了其自身的合成。基础表达被第二秒消除,“零”阻遏物。自动层环降低细胞对细胞的变化,同时通过化学诱导剂对蛋白质表达进行精确调整。WTC 846 allelic strains in which the controller replaced the native promoters recapitulated known null phenotypes ( CDC42, TPI1 ), exhibited novel overexpression phenotypes ( IPL1 ), showed protein dosage-dependent growth rates and morphological phenotypes ( CDC28, TOR2, PMA1 and the hitherto uncharacterized PBR1 ), and enabled cell cycle同步(CDC20)。WTC 846定义了一个“表达夹”,可以通过实验者在细胞蛋白丰度范围内调整蛋白质剂量,而设定点周围的变化有限。
搬迁沙田污水处理厂往岩洞的实时大数据人工智能环境影响评估 (AIEIA) 执行摘要 搬迁沙田污水处理厂往岩洞(本项目)的环境影响评估中,位于沙田马场和周边河道的彭福公园鹭鸟林被列为环境指标之一。目前,香港对鸟类生态栖息地的监测主要以人为观察为主,而人为观察的时间间隔有限。由于繁殖季节环境变化微妙,人为不易分辨鸟类行为的细微变化。渠务署藉此机会与香港科技大学合作,通过在项目下对彭福公园鹭鸟林进行先导观察,探索将最先进的绿色人工智能 (AI) 技术融入环境监测。观察是明智行动的第一步。完整的阵列数据收集系统 (ADCS) 和实时数据提取管道架构经过全面设计,可实现模块化,并可成功部署在各种结构中,确保在所有环境中可靠运行。ADCS 具有多种优势,可满足户外环境长期监测的需求:(i) 自动连续录制;(ii) 高分辨率视频;(iii) 高帧率视频;(iv) 巨大的本地数据存储;(v) 保护恶劣环境(例如极端天气条件)。采用一种新的视频压缩标准高效视频编码 (H.265) 来处理、存储和传输高分辨率视频,同时保持视频质量。在户外环境中实现数据采集自动化之后,实施了 AI 算法,以从长达数月的数据中检测鸟类。本研究重点是检测大白鹭和小白鹭,即研究地点的主要鸟类。AI 算法开发的主要挑战是缺乏香港鸟类的标记数据集。为了解决这个问题,我们利用 3D 建模制作了大白鹭和小白鹭的合成鸟类数据集。在虚拟图像的开发过程中,我们应用了姿势和身体大小等显著特征的大量变化,这反过来又迫使模型专注于专家用来区分鸟类物种的细粒度鸟类特征,例如颈部和头部。经过训练的 AI 模型能够在不同背景下以高预测分数区分和定位鸟类物种,平均准确率达到 87.65%。我们的人工智能 ADCS 解决方案比传统的人工观察具有多种潜在优势,能够在不同的天气条件下为不同物种的鸟类计数、行为研究、空间偏好以及种间和种内相互作用提供密集的表面。这项研究的结果和发现有利于未来规划环境监测工作以及项目下的工作阶段,以尽量减少对彭福公园鹭鸟林的潜在环境影响。