连续体(BICS)中的结合状态是零宽(有限的寿命),即使它们与连续的扩展状态共存,但仍在系统中仍然存在的特征模式。产生的高频共振可能在光子整合电路,过滤,传感和激光器中具有显着应用。在本文中,我们证明了基于光子三轴腔的简单设计可以同时显示Fabry-Pérot(FP)和Friedrich-Wintgen(FW)BICS,并且它们的出现非常依赖于将腔附着在外部介质上的方式。我们首先考虑一个对称腔,其中长度D 3的存根被两个长度D 2的存根包围,所有存根均由长度D 1的段隔开。当两个端口之间插入腔时,我们在理论上证明了在长度d 1,d 2 2和d 3之间的可辨式条件下,在实验上证明了FP类型的对称BIC(S-BIC)和抗对称BIC(AS-BIC)的存在。S-BIC和AS-BIC可能会彼此交叉,从而产生双重变性的BIC。通过打破腔体的对称性,AS-BICS和S-BIC可以融合在一起,并实现FW型BIC,其中一种共振保持为零,而另一个共振却宽阔。通过考虑另外的两个配置,其中三端腔与一个或两个端口仅在一个侧连接起来,可以在结构内部诱导其他BIC。通过略微使BIC条件略有失调,后者转变为电磁诱导的透明度 /反射或FANO共振。最后,可以设计这种三重速度腔,以实现某些频率的接近完美吸收。使用同轴电缆在辐射频域中通过实验确认了从绿色功能方法获得的所有分析结果。
3英国普雷斯顿中央兰开夏郡大学教练与表演学院。 4位运动与运动科学学院,利物浦约翰·摩尔大学,英国利物浦。 5认知,神经可塑性和萨科皮尼实验室,佛罗里达州奥兰多市中心。 6俄亥俄州俄亥俄州大学俄亥俄州大学俄亥俄州肌肉骨骼与神经学研究所(OMNI),俄亥俄州雅典。 7俄亥俄州俄亥俄州大学卫生科学与专业学院体育培训系,俄亥俄州雅典。 8俄亥俄州俄亥俄州大学卫生科学与专业学院物理治疗系。 9爱尔兰利默里克利默里克大学。 orcid:taberner,0000-0003-3465-833X。 这项研究未获得公共,商业或非营利部门的任何资助机构的具体赠款。 作者证明他们与本文讨论的主题或材料具有直接财务利益的任何组织或实体没有任何隶属关系或财务参与。 地址给Matt Taberner的信件。 电子邮件:matthewtaberner@btinternet.com T版权所有©2025作者。 由Jospt Inc. D/B/A运动科学媒体出版。 这项工作的原始内容可根据创意共享归因4.0许可的条款使用。 这项工作的任何进一步分配都必须保留作者的归因和作品的标题,期刊引用和doi。3英国普雷斯顿中央兰开夏郡大学教练与表演学院。4位运动与运动科学学院,利物浦约翰·摩尔大学,英国利物浦。5认知,神经可塑性和萨科皮尼实验室,佛罗里达州奥兰多市中心。6俄亥俄州俄亥俄州大学俄亥俄州大学俄亥俄州肌肉骨骼与神经学研究所(OMNI),俄亥俄州雅典。7俄亥俄州俄亥俄州大学卫生科学与专业学院体育培训系,俄亥俄州雅典。8俄亥俄州俄亥俄州大学卫生科学与专业学院物理治疗系。9爱尔兰利默里克利默里克大学。orcid:taberner,0000-0003-3465-833X。这项研究未获得公共,商业或非营利部门的任何资助机构的具体赠款。作者证明他们与本文讨论的主题或材料具有直接财务利益的任何组织或实体没有任何隶属关系或财务参与。地址给Matt Taberner的信件。电子邮件:matthewtaberner@btinternet.com T版权所有©2025作者。 由Jospt Inc. D/B/A运动科学媒体出版。 这项工作的原始内容可根据创意共享归因4.0许可的条款使用。 这项工作的任何进一步分配都必须保留作者的归因和作品的标题,期刊引用和doi。电子邮件:matthewtaberner@btinternet.com T版权所有©2025作者。由Jospt Inc. D/B/A运动科学媒体出版。这项工作的原始内容可根据创意共享归因4.0许可的条款使用。这项工作的任何进一步分配都必须保留作者的归因和作品的标题,期刊引用和doi。
摘要:连续体(FW-BIC)中的Friedrich – Wintgen结合状态在波物理现象的领域特别感兴趣。它是通过属于同一腔的两种模式的破坏性干扰来诱导的。在这项工作中,我们通过分析和数值显示了FW-BIC在T形腔中的存在,该腔由长度为d 0的存根d 0和两个长度d 1和d 2的侧向分支,该腔附着于限定的波导上。整个系统由在电信范围内运行的金属 - 绝缘子 - 金属(MIM)等离子波导组成。从理论上讲,当d 1和d 2相称时,这两个分支会诱导BIC。后者独立于D 0和有限的波导,其中T结构被移植了。通过打破BIC条件,我们获得了等离子诱导的透明度(PIT)共振。坑的共振对波导的介电材料的敏感性可能会被利用,以设计适合感应平台的敏感纳米传感器,这要归功于其很小的足迹。灵敏度为1400 nm/riU,分辨率为1.86×10 - 2 RIU显示出高度的性能水平。此外,该结构也可以用作生物传感器,在其中我们研究了人体中浓度的检测,例如Na +,K +和葡萄糖溶液,这些敏感性分别可以达到0.21、0.28和1.74 nm DL/G。我们设计的结构通过技术发展,并且具有良好的应用前景,作为生物传感器,可检测血红蛋白水平。通过Green功能方法获得的分析结果通过使用COMSOL多物理学软件基于有限元方法来验证。
我们考虑了由非等级三级激光器产生的两种模式光,在光力学腔中,与两种模式挤压真空储存库中的参数振荡器一起产生。使用稳态状态下的腔模式变量的期望值分析了泵模式,光学耦合强度和挤压真空储层对腔模式挤压和纠缠特性的影响。结果表明,所考虑的系统产生的两模式光显示出正交挤压和纠缠。在空腔中存在参数振荡器,并挤压真空储层可以增强腔模式灯的挤压,纠缠和平均光子数的程度。光力学腔对腔模式的平均光子数和纠缠没有影响,但增加了正交挤压的程度。
在这项工作中,我们从理论上提出并在实验上证明了在光子晶体平坦带上连续体(BIC)中的超结合状态的形成。这种独特的状态同时在布里渊区的扩展区域中表现出增强的质量因子和接近零组的速度。在拓扑转换时实现了对称性保护的BIC固定在K = 0与两个Friedrich-Wintgen Quasi-BICS合并,这是由相反对称性的有损光子模式之间的破坏性干扰引起的。作为概念验证,我们采用了Ultraflat Super BIC来证明单个颗粒的三维光学诱捕。我们的发现提出了一种新颖的方法,可以在次波长量表上为创新光电设备的次波长量表进行工程。
微型真空电弧推力器是微型和纳米卫星上推进系统的候选系统之一。它们具有多种优势,例如比冲高、使用密度高、体积小的固体推进剂而不必使用储罐和压力系统,以及包含电子和离子的等离子体膨胀而不必使用中和阴极。多电荷离子的出现是解释离子以极高速度存在的原因之一。本文重点介绍了真空电弧推力器的简化一维模型,考虑了真空电弧推力器典型条件下阴极表面的电子和原子发射以及极间气体的分解。对于钛阴极材料,结果表明,逐步电离是理解真空电弧条件下观察到的高等离子体的关键因素。
4。Features.........................................................................................................................................................13 4.1.Alarms, warnings, and notifications............................................................................................ 13 4.2.Altitude diving..................................................................................................................................14 4.3.Ascent rate....................................................................................................................................... 15 4.4.Battery................................................................................................................................................16 4.5.Bookmark..........................................................................................................................................16 4.6.Ceiling broken................................................................................................................................. 16 4.6.1.Algorithm lock...................................................................................................................... 16 4.6.2.Warning: Ceiling broken .................................................................................................. 17 4.7.Clock...................................................................................................................................................18 4.8.Calibrating compass........................................................................................................... 18 4.8.2.Compass........................................................................................................................................... 18 4.8.1.设置偏差................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 19 4.8.3。Locking the bearing........................................................................................................... 19 4.9.Customizing dive modes with Suunto app............................................................................. 20 4.10.Decompression algorithms....................................................................................................... 20 4.10.1.Suunto Fused™ RGBM 2 algorithm................................................................................ 21 4.10.2.Bühlmann 16 GF algorithm............................................................................................ 22 4.10.3.Diver safety........................................................................................................................24 4.10.4.Oxygen exposure.............................................................................................................24 4.11.Decompression dives.................................................................................................................. 25 4.11.1.Last stop depth................................................................................................................... 27 4.12.AIR/NITROX模式..................................................................................................................................................................................................................... 30 4.16.2。Deco profile................................................................................................................................... 28 4.13.设备信息................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 29 4.14。Display.............................................................................................................................................29 4.15.Dive history....................................................................................................................................29 4.16.潜水模式..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 30 4.16.1。量规模式............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. 31 4.17。Dive planner................................................................................................................................... 32 4.18.Flip display..................................................................................................................................... 32 4.19.Gas consumption..........................................................................................................................32 4.20.Gas mixtures.................................................................................................................................33
% 5702.13 1.12(11)×10 -25 48.5 17.9 33.6 5715.30 1.07(16)×10 -25 49.1 17.3 33.6 5752.04 2.88(95)×10 -26 61.0 21.3 17.7 5816.60 2.60(28)×10 -26 29.4 37.3 33.3 5842.20 1.61(30)×10 -26 28.8 39.7 31.5 1.90(30)×10 -26 2.20(30)×10 -26 5875.20 2.42(24)×10 -26 30.5 29.3 40.3 40.2 2.33(24)×10 -26 5905.72 1.33(24) 1.76(20)×10 -26 1.53(20)×10 -26 5933.75 1.03(10)×10 -26 21.3 41.3 41.5 37.2 1.21(10)×10 -26 1.14(10)×10 -26 1.17(10)×10 -26 1.17(10)×10 -26 1.17(10 -26 1.17(10)×10-26×10-26×10-26×10-26×10-25(10-25) 1.18(10)×10 -26 6022.06 7.4(15)×10 -27 25.9 30.6 43.5 6120.45 7.0 7.0(12)×10 -27 14.6 34.0 51.4 6224.09 3.5(12)3.5(12)×10 -27 17.9 36.6 36.6 36.6 45.5 6369.00 a <5×7 636.00 a <5×7 67 636.6369.00 a <5×27 67 636.636.00 a <5.5×7 67 66.6 34.6 6.9(65)×10 -27 85.4 5.9 8.7 6562.18 9.1(40)×10 -27 79.4 8.0 12.6 6637.62 4.7(14)×10 -26 71.8 6.9 21.9 21.3 21.3 257