b"其中 | z \xe2\x9f\xa9 = D ( z ) | 0 \xe2\x9f\xa9 是一个与真空态 | 0 \xe2\x9f\xa9 相关的相干态,通过位移算子 D ( z ) = exp \xe2\x88\x92 za \xe2\x80\xa0 \xe2\x88\x92 \xc2\xaf za 表示 Heisenberg\xe2\x80\x93Weyl 代数 [ a , a \xe2\x80\xa0 ] = 1 [ 6 ]。我们注意到,该提议看似简单,但代价是“字母”的非正交性,即 tr ( \xcf\x81 0 \xcf\x81 1 ) \xcc\xb8 = 0,导致它们的可区分性受到限制。由于相干态不需要非线性介质来产生,因此与早期利用压缩态 [ 7 ] 且要求“硬”非线性相比,使用相干态似乎更具优势 [ 3 ]。然而,实验技术的最新进展可能会扭转这一趋势,至少在超越标准相干态变得有利的情况下。以薛定谔猫态作为正交字母表状态的候选者为例 [ 1 ]。这项研究的目的是给出一个由 Gazeau\xe2\x80\x93Klauder 相干态组成的字母表候选者的例子 [ 8 ]。我们分析了与配备了克尔介质典型的多项式非线性的振荡器相关的 Gazeau\xe2\x80\x93Klauder 状态的二进制通信。已经针对各种量子系统研究了 Gazeau\xe2\x80\x93Klauder 相干态:单模”
其中 q =1.605x10 -19 是电子的单位电荷。我们可以看到,这个电位是光频率的线性函数。获取不同光频率下的值使得确定功函数成为可能。为了演示光电效应,应用了真空光电二极管。真空光电二极管(或真空光电管)是带有光敏阴极的真空二极管。图 1 显示了真空光电二极管的结构和基本测量装置。
我特此授予西蒙弗雷泽大学将我的论文、项目或扩展论文(标题如下所示)出借给西蒙弗雷泽大学图书馆用户的权利,并仅为此类用户或响应任何其他大学或其他教育机构图书馆的请求,代表其自身或其用户之一制作部分或单个副本。我还同意,我或研究生院院长可以授予出于学术目的多次复制本作品的许可。未经我的书面许可,不得出于经济利益复制或出版本作品。
摘要 在尝试开发基于电子电荷的电容标准时,一个多年来一直悬而未决的问题是真空间隙低温电容器的频率依赖性;关键的困难是:我们如何测量低至 0.01 Hz 的频率依赖性?在本文中,我们成功地将频率依赖性的上限设定为 0.01 Hz 至 1 kHz,约为 2 × 10 − 7 。我们通过考虑 Cu 电极表面绝缘膜的色散模型来实现这一点;该模型的关键预测是色散在低温下会降至非常低的值。通过测量有限频率范围内的频率依赖性,我们验证了这一预测,从而提供了足够的支持来得出该模型是正确的结论。我们还指出,与电容标准无关,这种低温电容器为非晶材料低温动力学等领域的测量提供了与频率无关的标准。
光电效应和热电子效应在说明性实验中结合在一起,以证明太阳光和热可以同时转化为电能。当电子从阴极发射并被阳极收集时,阳极和阴极费米能级之间会产生化学势差。当电子通过负载返回发射极费米能级时,可以提取功。当电子未被热化时,它被称为“热”电子。Ross 及其同事预测,热载流子转换系统的 AM1.5 效率极限为 66%,高于纯热系统的 52% 或量子系统的 33%(例如光伏电池)。本研究旨在提供一种易于复制的实验格式来探索这些概念。作为适合学生实验室的示例,商业真空光电管被用作量子和热能转换器。由 Ag 2 O:Cs 组成的 S1 光电阴极在低温下使用,T o 100 � C,以证明加热和照明光电管转换的功率大于在黑暗中加热或在室温下照明下获得的功率。虽然此示例中的转换效率和功率产量很小(约10 � 3 %),但实验展示了如何同时利用两种形式的太阳能。它还促进了对太阳能转换器进行评估的热力学方法。本文讨论了使用铯化 III/V 材料(例如InGaAsP:Cs)作为光电阴极作为实现高效热电子器件的可能研究途径。r 2004 Elsevier B.V. 保留所有权利。
在过去的 20 年里,尽管转移标准的可重复性较差,但几次国际比较表明,国家实验室持有的主要真空标准之间的一致性可能不像相关测量不确定性所表明的那样可靠。本报告回顾了此类比较的结果,分析了实验室与所使用的各种主要标准之间的一致性水平,并详细介绍了 NPL 主要真空标准之间的内部比较。该报告强调了支撑不同类型标准的物理模型和假设中的弱点,并提出了一些改进措施,包括实验协议。它还指出了历史上由于缺乏文献记录而可能掩盖了模型或实验实践中的缺陷的领域。