摘要。马尔可夫链蒙特卡洛法被广泛用于多孔介质随机问题。但是,问题的大量随机维度导致该方法的接受率较低。基于差分进化的马尔可夫链蒙特卡洛方法是此问题的良好替代方法。此外,为了减少问题的随机维度,Karhunen-lo` eve膨胀(KLE)通常用于生成验收能力场。此策略非常有效,但允许在模拟过程中仅生成一个协方差函数的字段。从这个意义上讲,各种自动编码器(VAE)通过生成几种类型的字段而得出,从而导致更现实的模拟。然后,KLE发出了不同字段(不同的协方差函数)的数据集(不同的协方差函数)来训练VAE神经网络。这项工作应用了差分进化马尔可夫链蒙特卡洛方法,其中选择步骤(桌)用于解决涉及异质介质中单相流体流量的贝叶斯推理问题。结果表明,桌面的性能要比原始DE方案更好。此外,VAE结果与KLE的结果非常相似,表明即使使用更通用的场发生器,该方法也是一致的。
基于变异自动编码器(VAE)的深层可变生成模型已显示出有希望的视听语音增强性能(AVSE)。基本的想法是学习干净的语音数据的基于VAE的视听先验分布,然后将其与统计噪声模型相结合,以从目标扬声器的嘈杂的音频录制和视频(LIP图像)中恢复语音signal。为AVSE开发的现有生成模型没有考虑到语音数据的顺序性质,从而阻止它们充分整合视觉数据的力量。在本文中,我们提出了一个视听深度卡尔曼滤波器(AV-DKF)生成模型,该模型假设了潜在变量的一阶马尔可夫链模型,并有效地融合了视听数据。此外,我们将一种有效的推理方法来估算测试时估计语音信号的方法。我们进行了一组实验,以比较语音增强的生成模型的不同变体。结果证明了AV-DKF模型的优越性,与仅音频版本以及基于Audio-Audio-forio-visual Vae模型相比。
设计只能与其数学表示一样好。在工程设计优化中,所选的参数化方法可以对结果产生重大影响。本文介绍了一种利用变异自动编码器(VAE)的翼型设计参数化的新方法,这是一类以降低维数的熟练程度而闻名的神经网络。但是,VAE的重大挑战是编码潜在空间的解释性。这项工作旨在通过创建具有可解释潜在空间的网络来解决此问题,从而产生人类可以理解的参数。使用综合的UIUC机翼数据库评估了这种方法的有效性,该数据库提供了多种式机翼形状供分析。我们表明,VAE可以成功提取翼型几何形状的关键特征,并使用六个参数对其进行参数化,这些特征以设计器可以理解的方式显示与机翼属性的明显相关性。此外,它可以平滑地插入数据点,从而产生新的机翼,从而提供实用且可解释的机翼参数化。
本研究采用数据驱动的方法来研究物理系统振动,重点关注两个主要方面:使用变异自动编码器(VAE)生成物理数据(即数据“相似”与通过现实世界过程获得的使用变压器,以便使用体内稀疏传感器(观察者)中的信息在时间空间中连续预测柔性身体非平稳振动(2D时间序)。 VAE经过从作者进行的实验中收集的涡旋诱导振动(VIV)数据进行训练,然后负责生成类似于实验的合成VIV数据。 然后使用合成数据来训练一个变压器结构,其目标是使用稀疏观测值不断预测时间空间的振动。 针对实际实验测试了变压器(从未见过实际数据),并将其性能与对实际数据训练的相同体系结构进行了比较。 这样做,VAE的能力生成保留其培训数据内在属性的数据(即) 评估身体)。 最终提出了变压器体系结构,LSTM和DNN的预测性能之间的比较。使用变压器,以便使用体内稀疏传感器(观察者)中的信息在时间空间中连续预测柔性身体非平稳振动(2D时间序)。VAE经过从作者进行的实验中收集的涡旋诱导振动(VIV)数据进行训练,然后负责生成类似于实验的合成VIV数据。然后使用合成数据来训练一个变压器结构,其目标是使用稀疏观测值不断预测时间空间的振动。针对实际实验测试了变压器(从未见过实际数据),并将其性能与对实际数据训练的相同体系结构进行了比较。这样做,VAE的能力生成保留其培训数据内在属性的数据(即身体)。最终提出了变压器体系结构,LSTM和DNN的预测性能之间的比较。
学习表征捕获对世界的非常基本的理解是机器学习的关键挑战。隐藏在数据中的解释因素的层次结构是如此一般的表示,并且可以通过分层VAE实现。然而,培训层次的VAE总是遭受“后塌陷”的苦难,其中数据信息很难传播到更高级别的潜在变量,因此导致层次结构不良。为了解决这个问题,我们首先是从信息理论的角度来减轻后层崩溃的现有方法的缺点,然后突出了正规化的必要性,即在维持不同级别之间的依赖性的同时,将数据信息明确传播到高级潜在变量。这自然会导致提出高级潜在表示作为顺序决策过程的推断,这可能受益于应用强化学习(RL)。将RL的目标与正规化的目标保持一致,我们首先引入了一条跳过的途径,以获取奖励,以评估潜在的潜在表示的信息内容,然后基于它的Q-VALUE函数可能具有正规化的一致优化方向。最后,策略梯度是典型的RL方法之一,用于训练层次VAE,而无需引入梯度估计器。1。简介实验结果坚定地支持我们的分析,并证明我们提出的方法有效地减轻了后塌陷问题,学习了信息的层次结构,获得了可解释的潜在表示,并且在下游任务中明显优于其他基于层次的VAE方法。
功能磁共振成像(fMRI)的摘要最新进展有助于以前的早期产前和新生儿脑发育的无法访问的轨迹。迄今为止,胎儿 - 神经fMRI数据的解释依赖于线性分析模型,类似于成人神经成像数据。但是,与成人大脑不同,胎儿和新生大脑的发展迅速,超过了整个寿命的任何其他大脑发育期。因此,在沿着产前 - 神经期连续体的大脑发育的关键时期,传统的线性计算模型可能无法充分捕获这些加速且复杂的神经发育轨迹。为了获得对胎儿 - 神经性大脑发育的细微理解,包括非线性增长,我们首次开发了数量的,全系统范围的大脑对大脑活动的代表(胎儿(> 500)(> 500)的(> 500)的早产和完整的新生儿,使用了一种不受欢迎的模型,以优于替代的综合模型,以前陈述了一种模型(Vae),以前是一种模型(Vae),以前是一种模型(Vae),以前是一种模型(VAI),是一种模型,是一种模型,是一种模型)健康成年人的数据。在这里,我们证明了非线性脑特征,即潜在变量,该特征是在人类成年人的RSFMRI上预先介绍的,具有重要的个体神经特征,携带了重要的个体神经特征,从而改善了产前神经性脑脑成熟模式的表示,并具有更准确的和稳定的年龄预测与新生酸盐群体相比,并具有稳定的年龄预测。使用VAE解码器,我们还揭示了跨越感觉和默认模式网络的不同功能性脑网络。使用vae,我们能够可靠地捕获和量化复合物,非线性胎儿 - 神经性神经连通性。这将为详细绘制其起源于胎儿生活的健康和异常功能性脑签名的详细映射。
通过Tanushree Banerjee *,Maolin Mao,Maolin Mao,Mario Bijelic和Mario Bijelic和Felix Heide,建议使用3D对象检测的方法,延长了我当前的项目,“ OD-VAE 2:可解释3D对象检测的解锁分析”,以解释3D对象检测”。在各种自动编码器(VAE)中。 *表示同等的贡献。延长了我当前的项目,“ OD-VAE 2:可解释3D对象检测的解锁分析”,以解释3D对象检测”。在各种自动编码器(VAE)中。*表示同等的贡献。
摘要:生成式人工智能基本上是人工智能的一个子领域。它主要侧重于开发能够生成图像、音乐、文本等创意输出的系统。通过深度学习技术,生成模型能够独立生成看起来像人类创作的内容。生成式人工智能的关键特征是它能够从庞大的数据集中学习、捕捉模式并生成具有相似特征的新内容。近年来,生成式人工智能模型如生成对抗网络 (GAN) 和变分自动编码器 (VAE)。GAN 由两部分组成:生成器网络和鉴别器网络,它们参与生成和评估内容的竞争过程。VAE 采用编码器-解码器架构来学习和生成新样本。本文讨论了生成式人工智能未来有望做出重大贡献的关键领域。这些领域包括:医疗保健、艺术和娱乐、道德和社会考虑、自主系统、内容创作等。关键词:生成式人工智能、物联网 (IoT)、生成对抗网络 (GAN)、变分自动编码器 (VAE)、深度学习
de lawry aguila·2022·citado por 19-通过学习神经网络层的参数,vae编码健康大脑中的模式,从而最大程度地减少输入数据之间的重建损失和...
示例:VAE /扩散模型•True P*(x 0)是在拍摄的照片上分发并发布到Flikr•选择Pθ(x 0)作为表达模型(例如< / div>可以生成图像