(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人本版本发布于2023年5月15日。 https://doi.org/10.1101/2023.05.10.540284 doi:Biorxiv Preprint
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本发布的版权所有,于2023年5月9日发布。 https://doi.org/10.1101/2023.05.09.539950 doi:Biorxiv Preprint
触发阀Jodie C. Tokihiro,1英格丽·罗伯逊(Ingrid H.华盛顿西部西雅特市的351700箱351700,美国2 G. Ciamician化学系,意大利博洛尼亚大学3号,356510 NE Pacific Street泌尿外科。华盛顿大学的工程,352600,华盛顿州西雅图,98195 * *共同对应的作者摘要(163/200个或更少)触发阀是毛细管驱动的微流体系统的基本特征,可在毛细管驱动的微流体系统中停止以突然的多态性扩张和释放流体在Orthogonal频道中流动时的流动流体。该概念最初是在闭路毛细管电路中证明的。我们在这里显示触发阀可以在开放的频道中成功实现。我们还表明,可以将一系列的开放通道触发阀与主通道旁边或相对,从而产生分层的毛细管流。,我们根据平均摩擦长度的概念开发了一个用于触发阀的流动动力学的封闭形式模型,并成功地针对实验验证了该模型。对于主要信道,我们根据泰勒 - 阿里斯分散理论以及在渠道转弯中讨论了分层流动行为,并考虑了院长的混合理论。这项工作在自动微流体系统中具有潜在的应用,用于生物传感,居家或护理点样品制备设备,用于3D细胞培养的水凝胶构图以及An-A-A-ChIP模型。关键字:摩擦长度,触发阀,流体动力学,开放的微流体,毛细血管微流体,停止阀简介微流体设备精确地通过小通道移动流体,并且可以使用表面张力效应(毛细管力(毛细管力)(毛细管力),并通过通道化学和表面化学来实现自私自利的操作和自我监管的操作。毛细血管微流体通过自发毛细血管流(SCF)1-3驱动,并通过利用在设备体系结构中编码的毛细管力来执行定时的多步骤过程,而无需外部触发器(例如,按下按钮,按下一个按钮,对电气信号进行编程或其他用户活动)。4–6个触发阀(TGV)是使自主毛细管驱动的主要几何特征/控制元素之一。TGV是修改的被动停止阀,该停止阀将限制的液体释放在正交通道中毛细管驱动的另一个或类似液体的毛细管驱动流动上的限制液体(图1A)。这些瓣膜广泛用于各种闭合通道诊断应用中,例如用于细菌,抗体和蛋白质检测抗体或蛋白质检测的免疫测定以及实时细胞染色。7–10使用封闭通道TGV有大量的理论,实验和应用工作。7–19虽然将TGV扩展到打开微流体系统的概念是简短引入的,但需要更深入的理论发展和实验验证。
背景:妊娠期使用机械瓣膜的妇女的管理可能很困难,因为这涉及到母亲避免瓣膜血栓形成的最佳管理与胚胎或胎儿的抗凝风险之间的冲突。对于佩戴金属瓣膜的非孕妇或分娩妇女,使用华法林后瓣膜血栓形成的发生率约为每年 1% (2) 。与主动脉瓣相比,三尖瓣或二尖瓣的这种风险更大。其他风险因素包括既往血栓病史、心房颤动和存在一个以上的人工瓣膜。由于妊娠相关的止血变化会导致高凝状态,因此妊娠期间血栓形成的风险更高。INR 也难以控制,而这是已知的瓣膜血栓形成的主要风险因素 (3) 。心输出量的生理变化也可能影响女性的预后。
客户:法兰克福市政污水处理厂 流体:空气,70°C,鼓风机压力:1.65 bar 绝对值,流量:3700 Nm³/h 任务: - 改善以前使用的手动蝶阀的控制特性。 - 系统控制自动化 - 通过使用低压损阀降低能耗 解决方案:安装具有优化特殊控制几何形状的电动 GEFA-DOMINO 控制滑块 DN 250,代替使用的蝶阀 DN 300,在阀门完全打开和最大流量时压力损失约为 1.98 mbar。 结果:节省能源成本,在调试后运行约 1 年后,可摊销约 50,000 欧元的投资。
全心脏功能的计算建模是研究心脏力学和血门动力学的有用工具。许多现有的心脏模型专注于机电方面,而无需考虑生理瓣膜并使用简化的流体模型。在这项研究中,我们开发了一个四腔心脏模型,具有逼真的腔室几何形状,详细的阀门建模,具有纤维结构的超弹性和流体 - 结构相互作用分析。我们的模型用于研究具有不同建模假设的心脏行为,包括受限制/游离阀环动力学,以及/没有心脏腹膜相互作用。我们的仿真结果捕获了瓣膜小叶与周围流动之间的相互作用,典型的左心室流动涡流,典型的静脉和浮力流动波形,以及生理心脏变形,例如心室平面运动。自由环可以明显地改善早期舒张期的心室填充和心房排空。此外,我们发现心脏上的添加的心包力对心房壁变形具有主要作用,尤其是在心房收缩期间,并进一步有助于心房填充过程。最重要的是,当前的研究为考虑所有心脏瓣膜和流体 - 结构相互作用的全面多物理学建模提供了一个框架。
摘要。在这项研究中,已经开发了可控的压缩成型过程,用于生产可变的厚度聚氨酯心脏瓣膜。为压缩成型过程建立了一个实验设施。添加剂制造的聚合物模具(AM)用于确定成功生产聚氨酯心脏阀的合适设计配置和测试过程参数。实验,以研究变化压缩成型参数的影响。由于压缩模具能够产生具有控制厚度的薄壁部分,因此实验结果表明,良好控制的压缩成型技术是浸入成型过程的可行替代方法。AM聚合物模具表明,该过程可用于自动实验设施中,以创建工作原型聚氨酯心脏阀。AM聚合物模具表明,可以获得模具布局的合适设计配置并创建工作原型聚氨酯心脏阀。
化学响应阀是基于通道的微流体学的必不可少的设备。1-3这样的系统选择性地操纵/控制了由外部输入触发的一小部分液体内部的液体或隔室。通常,微流体阀是通过使用刺激反应性聚合物作为活性材料设计的。1,2不同的基于聚合物的阀,由电气4,5或磁场控制,6个红外光,7,8温度,9和pH 10。尽管如此,替代性响应式设备的设计,对不同和更复杂的物理化学参数(例如手性)敏感,这是一个有趣的挑战。手性是元素颗粒,分子甚至宏观物体的基本对称特性。11通常将系统定义为手性,如果它作为一对无法叠加的“左手”和“右手”的镜像图像(对映异构体)。由于它们在医学,化学或生物化学中的众多应用,手性分子引起了人们的关注。11,例如,对于生物系统,可以为定义的生物受体设计特定的药物化合物,其中手性用于调整相互作用的性质。12因此,对映体相互作用最终会控制和扰动生物学功能,因此,在生物系统中,对映认知至关重要。尽管已经开发出不同的光谱法来有效地鉴定手性探针,但13-
已有多项研究涉及活性炭的功能化,通过在适当的氧化状态下嫁接不同的表面基团来实现所需的性能。25 – 27 在改变活性炭性能的方法中,用杂原子(如氧、氮、硼、硫和磷)掺杂碳基质是调整电子结构和改善表面性能的最有效方法。氧官能团通常存在于碳表面,必须考虑它们对电容性能的影响,因为它们参与法拉第相互作用,从而显著增加酸性水系超级电容器中碳的比电容。N 的孤对电子与碳材料石墨 p 键的共轭会进一步扭曲碳结构,从而产生缺陷和可用的活性位点,这已经得到了广泛而深入的研究。然而,磷掺杂碳材料骨架中磷配置的作用机理仍不清楚。28 – 36