• 益生菌:小牛肠道健康,抑制病原体 • 乳球菌 = 乳酸菌(奶酪、酸奶) • 生物多样性越高,IgG 吸收越好 • 奶牛健康状况(疫苗接种) 特异性 IgG
伊娃·范·罗伊(Eva van Rooij)在荷兰的马斯特里奇大学(Maastricht)获得博士学位。在心脏病学系。然后,她继续在埃里克·奥尔森(Eric Olson)博士实验室的UT西南医学中心完成分子生物学的博士后培训,在那里她担任了将microRNA与心血管疾病联系起来的研究。在她目前的工作中,她结合了高端测序技术,干细胞,小鼠遗传学,心脏病的动物模型和分子生物学,以确定心脏重塑和修复的重要途径,以帮助开发新的心脏病疗法。
是的,是正确的,DNA分为基因,您有每个基因的两个副本。您从父亲那里得到一份副本,您会从母亲那里得到一份副本。在DFNA9的情况下,这两个副本之一是有缺陷的,因此两个副本之一存在错误。它专门称之为错误所在的科克基因。是的,是的,是的,从这里开始,我们也有两个母亲之一的父亲。和COCH基因代码蛋白质,然后提到胆碱。良好的复制代码是好的胆碱,因此50%的患者胆碱是胆碱的好胆碱,就像像我们这样的所有普通人一样,没有这种偏差。是的,他们有100%的好胆碱,因为我们有两个好副本。不良副本,即产生错误的胆碱的DFNA9患者。,正是错误的蛋白质破坏了耳朵中的功能,导致患者遭受平衡和听力损失。
我的研究与概率建模,深度学习和优化相交,旨在将研究兴趣整合到这些领域的互补优势中,成为建模,推理和学习的基础问题。目前,我的工作着重于开发具有非规定约束的大规模深度学习的高效和理论上声音优化算法。我也对应用于跨不同领域的复杂设置的可扩展和健壮的概率方法感到特别兴奋,包括贝叶斯深度学习,深层生成模型,等级制度的贝叶斯模型以及在线/持续学习。
BART VAN MONTFORT是生物技术行业的经验丰富的专业人士,拥有超过20年的专门研究分析开发和质量控制的经验。他拥有分子科学的硕士学位和生物化学博士学位。主要关注基因治疗和疫苗的病毒载体,巴特在几种成功的许可应用中发挥了关键作用,包括首次许可的基因治疗产品和Janssen Covid疫苗,以及许多临床试验应用。他的专业知识在于产品规格及其理由,批判性分析,综合控制策略和货架与生活的主张。
2016年9月,她在莱顿大学(Leiden University)开设了自己的生物制药科学大师,并在生物制药系继续研究。这个9个月的实习导致了第二次作者,并完成了她的第一项研究报告:“微环境特异性CD39 +特征性的CD8 + T细胞在动脉粥样硬化中的衰竭”。在实习之后,2018年1月,马里特(Marit)移居波士顿(美国),在哈佛医学院(Harvard Medical School)进行了第二次硕士实习。在Brigham&Hospital的一部分Ana C. Anderson的实验室中,她研究了TLR9激动剂对肿瘤微环境的影响,以改善肿瘤的控制。她的第二次实习的研究报告标题为“ TLR9激动剂疗法的新见解:Lipocalin-2,CD200和CCL5是提高治疗疗效的新目标”,为此,她获得了Saal Van Zwanenberg博士的提名,即Lisf-Wannerberg Research,Lisf-Waward博士,Janneke-Janneke Fruinberberbers奖学金和奖学金奖。在2018年,Marit从莱顿大学获得了硕士学位。
Microsoft Quantum的研究(2017-2021)。在我与Microsoft Quantum任职期间,我的工作继续进行,该量子从美国圣塔芭芭拉(Santa Barbara)的Station Q开始,并在哥本哈根量子设备中心进行了长时间的访问后继续在荷兰代尔夫特(Delft)。在这段时间里,我一直在大量参与通过促进数据驱动的运输测量方法来系统化对Mapoanas的搜索的努力,并且我一直在推动对具有基于半导体的Josephson连接的CQED设备的研究。作为我的研究职责的一部分,我每天都在Microsoft的量子计算计划的实验部分进行合作,这既有助于实验的概念设计和数据解释,又在某些情况下是实验测量本身。在2020 - 2021年,我监督了一支由两名模拟工程师组成的团队,以实现混合设备的内部现实模拟,以及三名在混合超导量子方面进行实验的博士学位学生。
Physalis属包括未充分利用的物种,例如Groundcherry(Physalis Grisea)和Goldenberry(Physalis Peruviana),这些物种因其高度营养丰富的果实而受到重视。但是,农民的广泛采用受到阻碍,因为几乎没有做出任何改进。因此,它们的增长类似于野生物种,使生产管理具有挑战性。为了解决这个问题,我们正在使用基因组编辑来纠正不良特征,例如物种中的野生,不可控制的生长和果实的水果滴,由于脚踏室的关节区域脱落而在所有成熟阶段都发生。用于植物生长修饰,我们使用了三种不同基因的CRISPR/CAS9介导的诱变:自我促进,臂臂和勃起。编辑的线条表现出紧凑的生长习惯,其基因和物种也有所不同。为防止接地果实脱落,我们瞄准了无节型基因,并消除了花梗关节,使果实可以在植物上完全成熟。将对所有编辑的线条的果实糖含量,产量和其他与农业相关的特征进行评估。此外,我们正在使用GroundCherry作为模型探索无组织培养的基因组编辑。迄今为止,我们已经成功编辑了植物去饱和酶基因,并以预期的漂白表型恢复了后代。总的来说,我们的工作是将未充分利用的物种带到农艺可行作物水平的模型。