本研究引入了一个涵盖传染病疫苗接种和可变免疫期的 SIRS 隔室数学模型。我推导出一个基本再生数公式,并评估了无病平衡的局部和全局稳定性以及地方病平衡的局部稳定性。我证明了疫苗存在下的基本再生数对免疫力丧失的速度高度敏感,即使该速度略有降低也能对疾病控制做出重大贡献。此外,我还推导出一个公式来计算疫苗有效管理和控制疾病所需的关键有效期。对该模型进行的分析表明,增加疫苗的免疫持续时间(有效期)可减缓疾病动态,从而降低再感染率并减轻疾病严重程度。此外,这种延迟有助于降低基本再生数(R 0),从而促进更快地控制疾病。
1 这些研究寻找的是连续日平均值低于某个阈值的时间段,每 24 小时截止一次。2 我们将选择范围限制在那些似乎对研究 VRE 干旱有用的方法上。不同领域的其他方法
连续可变量子密钥与离散调制具有可能使用广泛可用的光学电源和现有的电信基础来提供信息理论安全性的潜力。尽管其实施比基于高斯调制的协议要简单,但证明其针对连贯攻击的有限尺寸安全性带来了挑战。在这项工作中,我们证明了有限尺寸的安全性,以针对涉及四个相干状态和杂化检测的离散调制量子键分配协议的共同攻击。要这样做,与大多数现有方案相反,我们首先将所有连续变量分解为协议期间的所有连续变量。这使我们可以使用熵累积定理,该工具以前已在离散变量的设置中使用,以结构有限尺寸的安全性证明。然后,我们通过半准编程计算相应的有限键速率,并在光子数截止下计算。我们的分析提供了0范围内的渐近率。1-10 - 4位每回合,用于数百公里的差异,而在有限的情况下,对于实际的参数,我们在n〜10 11回合和几十公里的距离之后获得了10 GBITS的秘密钥匙。
摘要:我们深入研究了使用光子量子计算来模拟量子力学并将其应用扩展到量子场论。我们开发并证明了一种利用这种连续变量量子计算 (CVQC) 形式来重现任意汉密尔顿量下量子力学状态的时间演化的方法,并证明了该方法在各种潜力下的显著效果。我们的方法以构建演化状态为中心,这是一种特殊准备的量子态,可在目标状态上诱导所需的时间演化。这是通过使用基于测量的量子计算方法引入非高斯运算来实现的,并通过机器学习进行增强。此外,我们提出了一个框架,其中可以扩展这些方法以在 CVQC 中编码场论而无需离散化场值,从而保留场的连续性。这为量子场论中的量子计算应用开辟了新途径。
我们深入研究了使用光子量子计算来模拟量子力学并将其应用扩展到量子场论。我们开发并证明了一种方法,该方法利用这种连续变量量子计算 (CVQC) 来重现任意汉密尔顿量下量子力学状态的时间演化,并且我们证明了该方法在各种潜力下的显著效果。我们的方法以构建演化状态为中心,这是一种特殊准备的量子态,可在目标状态下诱导所需的时间演化。这是通过使用基于测量的量子计算方法引入非高斯运算来实现的,并通过机器学习进行增强。此外,我们提出了一个框架,其中可以扩展这些方法以在 CVQC 中编码场论而无需离散化场值,从而保留场的连续性。这为量子场论中的量子计算应用开辟了新的途径。
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年7月8日发布。 https://doi.org/10.1101/2024.07.04.602063 doi:Biorxiv Preprint
要对运动进行全面分析,生物力学需要运动学和动力学数据。在循环中,使用主要集中在上肢和下肢的关节角度的运动捕获系统获得运动学数据。实际上,在自行车拟合分析中,经常研究有关下肢关节角速度和关节角加速度的信息。至于动力学,有必要使用仪器踏板来了解下肢施加到踏板上的力。使用从踏板获得的信息,可以通过诸如有效性索引(IE)等指标来评估踏板技术。IE定义为切向力与施加在踏板上的总力的比率(Millour,Velásquez和Domingue,2023年)。尽管该指标非常重要,但由于技术的成本和少数供应商的成本,仍存在一些差距,这限制了其在自行车配件中的实施。此外,这些因素限制了对影响踏板技术的生物力学因素的理解。在自行车拟合过程中,尚不清楚将力向踏板的传播是否有效(Bini,Hume和Croft,2011年; Menard,
5 MB 能否控制电子比特? 17 5.1 比特必须满足什么条件?....................................................................................................................................................................18 5.1.1 与引力普朗克常数、基本生物节律、膜电位和代谢能量货币有关的奇怪巧合 ..................................................................................................................................18 5.1.2 关于基于量子引力的图片中时钟频率的解释?....................................................................................................................................................................18 5.1.2 关于基于量子引力的图片中时钟频率的解释?....................................................................................................................................................................................18 18 5.1.3 是否涉及波拉克效应或阴影全息术?.................................................................................................................... 19 5.1.4 是否涉及与小质量相关的量子引力通量管?.................................................................................................................................................... 20 5.2 将比特表示为电压是否允许实现电子阴影全息术?.................................................................................................................................................... 21 5.2 将比特表示为电压是否允许实现电子阴影全息术?.................................................................................................................................................... 22 . ...
多年来,人类微生物组对健康和疾病的影响的影响越来越多(1)。高通量测序中的技术进步导致在维持人免疫系统的体内稳态环境中识别微生物组宿主相互作用(2)。此外,微生物群体系结构中的扰动(称为营养不良)与各种人类疾病有关(3-5)。气道微生物组是呼吸稳态的关键驱动力(6),与感染,超敏反应和免疫介导的疾病的敏感性有关(7)。粘膜免疫球蛋白在调节微生物组组成时发挥多种免疫效应子功能(8,9)。分泌的Iga对于使强大的宿主 - 微生物共生症至关重要,可以通过排除外源竞争者的粘膜壁ni,从而在粘膜壁ni中定殖(10)。患有先天性免疫误差(IEI)的患者,适应性或先天免疫系统缺陷导致胃肠道,呼吸道和皮肤介入经常与营养不良有关(11,12)。特别是,由于粘膜免疫力缺陷和微生物易位增加,肠道微生物群的变化已经描述了常见可变免疫降低(CVID)的患者(13,14),导致炎症和免疫失调(13,15)。cVID是最常见的IEI,其特征是低磁性血症,对疫苗接种的抗体反应受损和复发性呼吸道感染(14)。CVID患者中呼吸道微生物组的数据有限(16)。大约一半的患者会出现其他非感染并发症,例如自身免疫性疾病,淋巴增生和恶性肿瘤(14)。在CVID中,感染,免疫失调和微生物免疫相互作用的扰动可能导致气道失调,这有助于建立肺部损伤。通过常规培养方法,我们先前显示了炎型烟草和肺炎链球菌上呼吸道定植与CVID中的呼吸合并症之间的联系(16)。在这项单中心研究中,我们通过分子方法研究了口咽的细菌组成。我们使用口咽为易于访问的采样站点,被证明是有足够反映
引言:量子态断层扫描是量子信息学中的一项基本任务,旨在根据实验数据构建未知量子态的经典描述。量子态断层扫描的一个关键问题是:构建一个估计量的经典描述所需的最小样本数(未知状态的副本)是多少,该估计量的迹线距离与真实状态的迹线距离极有可能为 ε 接近?虽然这个问题已经在 qudit 系统中得到了广泛的解决,但对于连续变量 (CV) 系统 [1-3],例如以无限维希尔伯特空间为特征的玻色子和量子光学系统,这是一个悬而未决的问题。关于 CV 系统量子态断层扫描的文献主要依赖于相空间近似 [4-7],而相空间近似——至关重要的是——没有提供关于迹线距离(这是量子态之间距离最有意义的概念 [8、9])的任何严格性能保证。鉴于量子光学平台(以 CV 系统为例)在量子计算、通信和计量等量子技术中发挥的关键作用,文献中的这一空白尤其令人惊讶。我们的工作填补了这一空白,从轨迹距离的角度对 CV 系统的量子态断层扫描进行了详尽的分析。我们分析了三类状态的断层扫描: