摘要。本文讨论了地面可变稳定性飞行模拟器的开发。该模拟器旨在满足飞行员对飞行品质的训练要求。这一要求来自印度空军一流的飞行测试学校。该模拟器还为研究人员和航空航天学生提供了一个平台,使他们能够了解飞机动力学、研究飞机配置设计、飞行力学、制导和控制以及评估自主导航算法。飞机模型是使用开源数据构建的。该模拟器通过优化技术得到加强,以配置可变的飞机稳定性和控制特性来飞行并评估飞行品质的各个方面。通过一系列针对不同飞机稳定性条件的工程师和飞行员在环模拟来评估该方法。所选任务是经过验证的 CAT A HUD 跟踪任务。该模拟器还可以重新配置以承载增强型战斗机,试飞员团队可以将其作为飞行模型评估其功能完整性。
本报告以一项为期 18 个月的研究为基础,这项研究由全球工程和咨询公司 Tractebel Engineering GmbH(前身为 Lahmeyer International GmbH)和巴基斯坦咨询公司 Renewable Resources Pvt. Ltd (RE2) 根据世界银行的合同开展。报告的主要作者是 Karsten Schmitt、Achim Schreider、Georg Reithe 和 Julia Hoepp。这项研究由 Oliver Knight(高级能源专家)、Anjum Ahmad(高级能源专家)和 Sabine Cornieti(能源专家)委托和监督,并得到 Rikard Liden(巴基斯坦基础设施项目负责人)的支持。同行评审由四名世界银行集团工作人员进行:Anthony Granville(高级电力工程师)、Debabrata Chattopadhyay(高级能源专家)、Hemant Mandal(高级能源专家)和 Silvia Romero-Martinez(高级能源专家)。
re.public@polimi研究出版物politecnico di Milano后印版这是:J.D.biggs,G。使用单个可变速度控制力矩陀螺仪指导控制与动力学杂志,第1卷。43,N。10,2020,p。 1865-1880 doi:10.2514/1.G005181最终出版物可在https://doi.org/10.2514/1.g005181获得发布版本可能需要订阅。 引用这项工作时,请引用原始发表的论文。43,N。10,2020,p。 1865-1880 doi:10.2514/1.G005181最终出版物可在https://doi.org/10.2514/1.g005181获得发布版本可能需要订阅。引用这项工作时,请引用原始发表的论文。
免责声明 本文件是作为美国政府资助工作的记录而编写的。尽管我们认为本文件包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会或其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构或加利福尼亚大学董事会的观点和意见。
PLC:编程逻辑控制器ST:结构文本FBD:功能框图IL:指令列表语言LD:梯形图语言语言语言VFD:频率可变驱动程序SFC:顺序函数sfc:顺序函数表图DC:直接电流AC:替代电流AC:替代电流SRC:Silicon-Controll-controll-Controll-Controlled Rected Rected Rectifier PMERSTORTINT/INTERS Strocition Stroptast/Intement Scart intermotion SCAD SCAD/INTELLITY PMERTISTION TIA/IPPORTIANS IPSOUTERITY TOC ip:ip ip ip ip:和数据采集HMI:人机接口IGBT:绝缘栅极双极晶体管
这项合作是亚洲高级能源合作伙伴关系,由美国国际开发署和国家可再生能源实验室(NREL)领导,并通过进行研究,分析和能力建设来帮助部署高级能源系统(例如,可再生能源,能源,能源,能源效率,能源储存,电源存储,电气流动性,电源,能源安全和弹性,)。
由于 VRE 的不可调度性质,可以预见的是,边际市场仍然被天然气(和其他可调度能源)不成比例地主导(与按类型划分的总体市场渗透率相比)。虽然可再生能源渗透率有所增长,但储存对于促进不平衡市场上与化石燃料的边际卖方地位的竞争是必不可少的。鉴于边际卖方在能源市场中的重要性(通过其销售额决定现货价格),对可再生能源预期的纯粹调查(特别是那些独立于竞标市场考虑边际成本和相关价格预期的调查)应该意识到这一趋势。相反,通过考虑市场边际成分的不成比例的影响(或通过研究其他方法(例如终身成本),可以实现更合理的价格预期。
Pfeifenberger,《21 世纪输电规划:效益量化和成本分配》,为联邦-州电力传输联合工作组 NARUC 成员准备,2022 年 1 月 19 日。 Pfeifenberger、Spokas、Hagerty、Tsoukalis,《改进区域间输电规划的路线图》,2021 年 11 月 30 日。Pfeifenberger,《输电——伟大的推动者:认识到输电规划的多重好处》,ESIG,2021 年 10 月 28 日。Pfeifenberger 等人,《21 世纪的输电规划:提高价值和降低成本的行之有效的实践》,Brattle-Grid Strategies,2021 年 10 月。Pfeifenberger,《海上风力发电的输电选项》,NYSERDA 网络研讨会,2021 年 5 月 12 日。Pfeifenberger,《输电规划和成本效益分析》,向 FERC 员工的演示,2021 年 4 月 29 日。Pfeifenberger 等人,《纽约电网研究初步报告》,为 NYPSC 准备,2021 年 1 月 19 日。Pfeifenberger,“输电成本分配:原则、方法和建议”,为 OMS 准备,2020 年 11 月 16 日。Pfeifenberger、Ruiz、Van Horn,“通过输电系统实现不确定可再生能源发电多样化的价值”,BU-ISE,2020 年 10 月 14 日。Pfeifenberger、Newell、Graf 和 Spokas,“海上风电输电:纽约选项分析”,为 Anbaric 准备,2020 年 8 月。Pfeifenberger、Newell 和 Graf,“新英格兰的海上输电:更完善的电网规划的好处”,为 Anbaric 准备,2020 年 5 月。Tsuchida 和 Ruiz,“利用先进技术进行输电运行创新”,T&D World,2019 年 12 月 19 日。Pfeifenberger,“电力输电竞争带来的成本节约”,Power Markets Today 网络研讨会,2019 年 12 月 11 日。 Pfeifenberger,“改进输电规划:优势、风险和成本分配”,MGA-OMS 第九届年度输电峰会,2019 年 11 月 6 日。Chang、Pfeifenberger、Sheilendranath、Hagerty、Levin 和 Jiang,“电力输电竞争带来的成本节约:迄今为止的经验和增加客户价值的潜力”,2019 年 4 月。“对 Concentric Energy Advisors 关于竞争性输电报告的回应”,2019 年 8 月。Ruiz,“输电拓扑优化:在运营、市场和规划决策中的应用”,2019 年 5 月。Chang 和 Pfeifenberger,“精心规划的电力输电可为客户节省成本:改进的输电规划是向碳约束未来过渡的关键”,WIRES 和 The Brattle Group,2016 年 6 月。Newell 等人。 “纽约交流输电升级方案成本效益分析”,代表 NYISO 和 DPS 员工,2015 年 9 月 15 日。Pfeifenberger、Chang 和 Sheilendranath,“迈向更有效的输电规划:解决灵活性不足的电网的成本和风险”,WIRES 和 The Brattle Group,2015 年 4 月。Chang、Pfeifenberger、Hagerty,“电力输电的益处:识别和分析投资价值”,代表 WIRES,2013 年 7 月。Chang、Pfeifenberger、Newell、Tsuchida、Hagerty,“关于加强 ERCOT 长期输电规划流程的建议”,2013 年 10 月。Pfeifenberger 和 Hou,“接缝成本分配:支持跨区域输电规划的灵活框架”,代表 SPP,2012 年 4 月。Pfeifenberger、Hou,“美国和加拿大输电基础设施投资的就业和经济效益”,代表 WIRES,2011 年 5 月。