摘要 ABB 露天采矿部门提出了一种现代化的解决方案,用于改造铲式挖掘机的电力驱动和自动化系统。该解决方案基于 10 多年的变速驱动应用经验,以及德国和其他一些国家/地区的许多交流驱动参考项目。这里介绍的项目涉及 Bucyrus-Erie 295BII 铲式挖掘机,是与墨西哥的一家铁矿(由 Peña Colorada 公司所有)合作开发的,是 IGBT 技术交流驱动在这种类型的挖掘机上的首次应用之一。所有主驱动器都配备了模块化结构的变频器。安装的开关设备经过特殊测试,以适应非常恶劣的采矿环境。改造涵盖电机、变流器系统、驱动控制和诊断工具。电机已完全检修,具有高电气强度的绕组。变流器系统为标准重型类型,并已针对该项目进行了特别调整。功能强大的 AC 80 Advant 控制器已集成到现有设备中,并且已创建了实用的人机界面以用于诊断目的。调试两周后,该设备又进行了 10 天的试运行,并且自 1999 年 9 月以来一直处于永久运行状态。客户特别强调挖掘机的高可用性,这需要高效的服务系统。ABB 拥有当地服务机构和制造商热线,全年每天 24 小时提供服务。节省成本 任务是安装具有最佳效率的最先进的驱动系统。带有 IGBT 变频器和鼠笼式电动机的交流驱动器可满足该要求。驱动系统的总效率可达到约 93.5%,即电动机(95%)和变频器(98%)的单独效率之和。与旧系统相比,这代表着可观的节能效果。系统性能 ABB 是唯一一家提供低压变频器的供应商,其范围广泛,从 2.2 到 4300 kW,电压为 380 – 830 V。变频器的尺寸可承受重载范围内的极高过载,这对于铲式挖掘机来说是一项特殊的资产。工作周期(加速速度)甚至可以进一步优化,这取决于机器机械部件的状况和极限。标准版本设计用于以下过载: 150% 负载工作周期(每 240 秒 60 秒) 200% 负载工作周期(每 50 秒 10 秒) 另一个特点是 ABB 的 DTC(直接扭矩控制),它提供 16 µs 的非常快的控制周期,并且即使在满载铲车的情况下也能产生高加速度。
这些说明旨在帮助合格、有执照的维修人员正确安装、调整和操作本设备。在尝试安装或操作之前,请仔细阅读这些说明。未遵循这些说明可能会导致安装、调整、维修或维护不当,从而可能导致火灾、触电、财产损失、人身伤害或死亡。设备必须永久接地。未这样做可能会导致触电,从而导致严重的人身伤害或死亡。在进行任何电气连接之前,请关闭保险丝盒或服务面板的电源。在进行线电压连接之前完成接地连接。未这样做可能会导致触电、严重的人身伤害或死亡。
合作实现安全自动驾驶:在 AI-SEE 项目中,PENTA EURIPIDES² 资助的研究项目在能见度低的条件下安全出行是关键。21 个合作伙伴包括 OEM(原始设备制造商)和供应商层面的世界级参与者,将在三年内联手打造一个由人工智能支持的新型、强大的传感器系统,用于低能见度条件。结果将是一个强大的、容错的多传感器感知系统。它将在 24 小时/365 天的模式下在几乎所有照明和天气条件下运行,从而实现 SAE 4 级安全自动驾驶。由梅赛德斯奔驰股份公司牵头的项目于 2021 年 6 月 10 日以虚拟会议的形式启动。
摘要 人类的面孔是多变的;我们看起来各不相同。颅面疾病进一步增加了面部变化。为了了解颅面变异及其如何缓解,我们分析了斑马鱼 mef2ca 突变体。当这种转录因子编码基因发生突变时,斑马鱼会出现变化极大的颅面表型。多年来针对突变表型的低和高渗透性的选择性育种产生了对 mef2ca 突变具有弹性或敏感的菌株。在这里,我们比较了这些菌株之间的基因表达,结果显示选择性育种分别在低和高渗透性菌株中丰富了高和低 mef2ca 旁系同源物的表达。我们发现 mef2ca 旁系同源物的表达在未经选择的野生型斑马鱼中是可变的,这引发了这样的假设:旁系同源物表达的可遗传变异是突变表型严重程度和变异的基础。作为支持,对 mef2ca 旁系同源物、mef2aa、mef2b、mef2cb 和 mef2d 进行诱变,证明了旁系同源物的模块化缓冲作用。具体来说,一些旁系同源物缓冲严重性,而另一些则缓冲多变性。我们提出了一种新颖的表型变异机制模型,其中可变的残留旁系同源物表达缓冲发育。这些研究是理解面部变异机制的重要一步,包括一些具有遗传弹性的个体如何克服有害突变。
随访17±12。4年,范围为0.1-45)。随访和迄今未报告的临床特征是从已发表的12个家庭中获得的。审查了34例病例的大脑MRI扫描。MED27相关疾病表现为一种广泛的表型连续体,从发育和癫痫性 - 动物动态性脑病到具有运动异常的可变神经发育障碍。其特征是轻度至深远的全球发育迟缓/智力残疾(100%),双侧白内障(89%),婴儿性低下(74%),小头畸形(62%),小共济失调(63%)(63%),肌张力障碍(61%),epyly epyrbly coniably coniably coniably(51%),51%(50%),limbasitions,limbasitions,limbsise,limbasitions,limbsise(50%),(50%)(50%)(50%)(50%)(50%)(50%)(50%)(50%)(50%) (38%)和成年之前的死亡(16%)。脑MRI揭示了小脑萎缩(100%),白质体积损失(76.4%),蓬蒂恩下炎(47.2%)和基底神经节萎缩,具有信号改变(44.4%)。以前未报告的39个受影响的个体有7种纯合致病MED27变体,其中5种复发。OB提供了新兴的基因型 - 表型相关性。这项研究提供了对Med27相关疾病的全面临床 - 放射学描述,建立了Geno类型 - 表型和临床 - 放射学相关性,并提出了与CER EBELLO EBELLO诊所神经变性综合症的差异诊断,以及其他'Neuro-Medopopaties'的子类型。
解释机器学习的决策过程如今对模型的增强和人类的理解至关重要。这可以通过评估罪恶变量的可变重要性来实现,即使对于高容量的非线性方法,例如深神经网络(DNNS)。虽然只有基于删除的方法(例如置换重要性(PI))可以带来统计有效性,但当变量相关时,它们会返回误导性结果。条件置换重要性(CPI)在这种情况下绕过PI的局限性。然而,在高维设置中,变量之间的高相关性取消了其有条件的重要性,使用CPI以及其他方法会导致不可靠的结果,这是一个超出的计算成本。通过聚类或一些先验知识对变量进行分组,从而获得了一些功率,并导致更好的解释。在这项工作中,我们介绍了BCPI(基于块的条件置换重要性),这是一个新的通用框架,用于可变知名度计算,并具有统计保证,可处理单个和组案例。此外,由于处理具有较高基数的组(例如一组给定模式的观察结果)既耗时又是资源密集型的,因此我们还引入了一种新的堆叠方法,扩展了具有适合组结构的次级线性层的DNN体系结构。我们表明,随后的方法随着堆叠的控制而扩展了I型误差,即使是高度相关的组,并且在基准中显示了最高的精度。更重要的是,我们在大规模的医学数据集中执行了现实世界数据分析,我们旨在展示我们的结果和生物标志物预测的文献之间的一致性。
图 1:1971 年和 2018 年按燃料类型划分的全球一次能源结构占比 11 图 2:到 2050 年实现 1.5°C 气候目标所需的全球能源相关二氧化碳排放量减少量 12 图 3:可再生能源目标的地理分布 14 图 4:部门耦合与能源系统灵活性关系的说明 17 图 5:潜在电气化技术应用的示意图摘要 18 图 6:使用 IRENA 城市可再生能源规划平台的分析层次 21 图 7:IRENA 城市可再生能源规划平台的主要功能 23 图 8:建筑围护结构的热损失 28 图 9:不同研究对智能充电的影响 33 图 10:可再生能源存储部门耦合系统 48 图 11:崇礼分析的说明性概述 51 图 12:实现 100% 可再生能源崇礼通过采取跨部门措施实现的能源效率提升 52 图 13:哥斯达黎加电动公交车试点项目 58 图 14:研究区域的地理分布和情景排放量预测 59 图 15:2050 年碳减排效果最佳时的碳减排量 62 图 16:行业耦合机会水平说明 69
多年来,学术和工业太空行为者已经设想了可变的发射设备和涂料的使用。目的是克服具有恒定热光学特性的常见光学涂层的局限性。可变的发射设备和涂料允许设计人员最大程度地抑制热排斥,同时最大程度地减少加热器功率需求。这些涂层最有前途的是基于热色素(TCH)和电致变色(ECH)材料。热色材料可以在低温下以较差的发射器和高温下的良好发射器进行调整。因此,它们被提出为能够在板上航天器上支持热控制的智能元素。TCH无需任何电子反馈或机电驱动,因此以零功率成本进行操作。可变发射设备的另一种有前途的材料是基于电色素学的。通过使用低功率电势来适应表面的红外发射率来实现ECH用于空间应用的优势。在ESA和CNES资助的正在进行的研发(R&D)活动中,TCH多层瓷砖是基于用工业手段开发的VO2技术,而ECH设备则基于封装的导电聚合物。到目前为止,在热染色体的变化范围内,冷和热病之间的ECH和TCH发射率对比度分别为0.3和0.4。在本演讲中,各种方法是为了设计,制造和测试TCH和ECH
随着风能和太阳能在全球能源供应中的份额不断上升,越来越多的研究和经验正在涌现,涉及如何将这些可变可再生能源有效整合到电力系统中。考虑到现有资源的丰富性以及为本质上特定于系统的分析提供一般指导的难度,本指南并未详细介绍与每个主题相关的所有方法步骤和问题。相反,每个部分都包含一个工具包,其中包含指向补充材料的链接,这些补充材料提供了更深入的信息和指导。每个部分还为领导电网整合研究的团队提供了针对特定主题的行动建议。最后,只要有可能,每个部分都会包含来自实际电网整合研究的具体示例。