5.2(a)在此模型中,我们将根据训练数据中最接近的树的类别对一棵新树进行分类。这高度取决于培训数据的选择。如果我们将数据集分为两半,并为这两个数据集中的每个数据集制作k = 1的最邻居模型,那么我们很可能会在两个模型上获得非常不同的决策界限,因为我们将预测基于单个训练数据点。这意味着我们在模型中有很大的差异。至于偏见:是高还是低取决于我们认为仅地理位置是否足以确定树类型的信息。如果是这种情况,则偏差很低,因为1-NN模型可以描述非常灵活的映射(在这种情况下,从“位置”到“树类型”)。但是,如果有有关模型中未使用的功能中可用的树类型的相关信息,则可以将其视为偏见,这是由于“真实”输入输出关系的模型不足。
探地雷达 (GPR) 是一种成像系统,可用于观察现场地下情况,以研究土壤的层组成或埋藏物体的存在。由于地面的电磁特性,此类图像通常具有非常低的信噪比 (SNR)。此外,根据设计,埋藏物体被观察为双曲线,其形状可能与物体类型(例如空腔或管道)相关联。在这种情况下,埋藏物体的分类在民用应用中非常重要,例如恢复埋藏天然气管道的位置 [1] 或军事应用,例如地雷探测 [2]。为了进行这种识别,一些研究考虑使用信号反演技术 [3] 来提高 SNR,以便地球物理学家进行手动解释。当需要处理大量图像时,这种解决方案可能不切实际,因为它需要专门的人力资源。因此,自动识别方法已成为必需,并受到社区的关注。GPR 信号的自动分类分两步进行。首先,感兴趣区域(ROI)对应于
摘要。阿尔茨海默氏病(AD)缺乏有效的治疗方法,通常在发生实质性病理变化后发现干预措施具有挑战性。早期发现和对危险因素及其下游影响的理解至关重要。动物模型提供了研究这些前驱阶段的宝贵工具。我们使用表达三个主要人类APOE等位基因的小鼠来投资各种遗传风险,代替了小鼠APOE。我们利用这些小鼠模型利用高分辨率磁共振扩散成像,因为它提供了可以共同分析的多个参数的能力。我们研究了APOE基因型如何与年龄,性别,饮食和免疫力相关,以产生区域脑体积和分数各向异性的共同变化,这是对脑水扩散的敏感度量。我们的结果表明,基因型强烈影响尾状壳,PON,扣带回皮层和小脑,而性别影响双侧杏仁核和梨状皮层。免疫状态会影响许多区域,包括顶叶皮层,丘脑,听觉皮层,V1和双侧齿状小脑核。危险因素相互作用特别影响杏仁核,丘脑和PON。apoE2小鼠在常规饮食上表现出最少的时间变化,表明弹性,而ApoE3小鼠对高脂饮食(HFD)的影响最小。HFD扩增了多个大脑区域的衰老效应。包括饮食在内的AD危险因素的相互作用显示出灰灰色,PON,PONS,AMYGDALA,下丘,M1和腹侧轨道皮层的显着变化。未来的研究应研究这些协调的体积和纹理变化基础的机械性,可能通过检查基因表达和代谢中的网络相似性,以及它们与与神经退行性疾病进展有关的结构途径的关系。
注:首先通过 Kolmogorov-Smirnov 检验对各个组进行正态分布检验。对于正态分布数据,平均值、标准差 ( SD ) 和 p 值基于双样本 t 检验。如果在一个或两个组中违反了正态性假设,则列出中位数和四分位距 (IQR),并执行 Mann-Whitney U 检验(用 U 表示)。对于名义数据,对性别执行 Fisher 精确检验(用 F 表示),对惯用手执行似然比(用 L 表示)。
脑机接口不需要任何肌肉能力就能进行交流,因此被广泛研究用于帮助运动障碍患者。脑电图 (EEG) 作为一种低成本、轻量级的技术,是记录大脑活动产生的电位的常用方法 [1]。尽管 BCI 有着广泛的临床应用,但它却无法在实验室外使用。需要克服的主要挑战之一是受试者之间高度的差异性,在文献中称为“BCI 效率低下”现象,相当一部分用户即使经过几次训练后仍无法控制 BCI 设备。解决这个问题的有效方法之一是改进神经解码器 [2]。为此,研究得出了依赖于协方差矩阵的新特征,例如,对于 𝑇 信号样本的 EEG 信号 𝑋,𝐶𝑜𝑣 = 1 𝑇 −1 𝑋𝑋 ⊤,以及邻接矩阵。这些邻接矩阵是
摘要。两个椭球集的闵可夫斯基和与差一般不是椭球形的。然而,在许多应用中,需要计算在某种意义上近似闵可夫斯基运算的椭球集。在本研究中,考虑了一种基于所谓椭球微积分的方法,该方法提供了参数化的外部和内部椭球族,可以紧密近似于闵可夫斯基椭球的和与差。近似沿方向 l 是紧密的,因为椭球在 l 上的支撑函数等于和与差在 l 上的支撑函数。然后可以根据相应椭球的体积或迹的最小(或最大)测量值来选择基于外部(或内部)支撑函数的近似。建立了利用欧几里得几何或黎曼几何对两个正定矩阵的闵可夫斯基和与差的基于体积的近似及其均值之间的联系,这也与它们的 Bures-Wasserstein 均值有关。
自动驾驶汽车由于技术进步及其改变转移的潜力而引起了极大的关注。该领域中的一个关键挑战是精确的定位,尤其是在基于激光雷达的地图匹配中,由于数据中的退化,这很容易出现错误。大多数传感器融合技术,例如卡尔曼过滤器,都依赖于每个传感器的准确误差协方差估计来提高定位精度。但是,获得地图匹配的可靠协方差值仍然是一项复杂的任务。为了应对这一挑战,我们提出了一个基于神经网络的框架,用于预测LIDAR地图匹配中的本地化错误协方差。为了实现这一目标,我们引入了一种专门设计用于错误协方差估计的新型数据集生成方法。在使用Kalman滤波器的评估中,我们实现了2 cm的定位准确性,这是该域的显着增强。
本文介绍了Koopman Control家族(KCF),这是一个用于建模通用(不一定是控制效果)离散时间非线性控制系统的数学框架,目的是为在具有输入的系统中使用基于Koopman的方法提供可靠的理论基础。我们证明,KCF的概念捕获了非线性控制系统在(潜在无限维)功能空间上的行为。通过在KCF下采用广义的子空间不变性概念,我们为有限维模型建立了通用形式,该模型涵盖了常用的线性,双线性和线性切换模型作为特定实例。如果在KCF下子空间不变的情况下,我们提出了一种以一般形式近似模型的方法,并使用不变性接近概念来表征模型的准确性。我们结束了讨论所提出的框架如何自然地借给控制系统的数据驱动建模。
根据IPCC原则,IPCC进行“全面,客观,开放和透明”评估的科学文献的指数增长和增加的复杂性,使IPCC的任务变得复杂
1个计算机科学学院,中国劳资关系大学,北京100048,中国; tzhenkun@hotmail.com 2北京技术与商学院数学与统计学院,北京100048,中国3号地球表面流程和资源生态学国家主要实验室,北京师范大学,北京北部大学,北京100875,中国; tzhou@bnu.edu.cn 4北京师范大学的地理科学学院环境变化和自然灾害的主要实验室,北京100875,中国5地球与环境科学学院,皇后学院,皇后学院,纽约市,纽约市,纽约市,纽约市,纽约,纽约,11367,美国,美国; chuixiang.yi@qc.cuny.edu 6地球与环境科学系,纽约市纽约市研究生中心,纽约,纽约,纽约10016,美国7 Barry Commoner Health and The Environalser and The Environalser,Queens College,Queens College,纽约市纽约市,纽约,纽约,纽约,纽约,纽约,11367,美国,美国; eric.kutter@qc.cuny.edu 8 Dalian技术大学水与环境研究机构,达利安116024,中国; zhangqinhan@mail.dlut.edu.cn(Q.Z. ); nkrakauer@ccny.cuny.edu(N.Y.K。) 9土木工程系和NOAA-CREST,纽约市纽约市纽约市纽约市10031,美国 *通信:yingyingfu2015@hotmail.com1个计算机科学学院,中国劳资关系大学,北京100048,中国; tzhenkun@hotmail.com 2北京技术与商学院数学与统计学院,北京100048,中国3号地球表面流程和资源生态学国家主要实验室,北京师范大学,北京北部大学,北京100875,中国; tzhou@bnu.edu.cn 4北京师范大学的地理科学学院环境变化和自然灾害的主要实验室,北京100875,中国5地球与环境科学学院,皇后学院,皇后学院,纽约市,纽约市,纽约市,纽约市,纽约,纽约,11367,美国,美国; chuixiang.yi@qc.cuny.edu 6地球与环境科学系,纽约市纽约市研究生中心,纽约,纽约,纽约10016,美国7 Barry Commoner Health and The Environalser and The Environalser,Queens College,Queens College,纽约市纽约市,纽约,纽约,纽约,纽约,纽约,11367,美国,美国; eric.kutter@qc.cuny.edu 8 Dalian技术大学水与环境研究机构,达利安116024,中国; zhangqinhan@mail.dlut.edu.cn(Q.Z.); nkrakauer@ccny.cuny.edu(N.Y.K。)9土木工程系和NOAA-CREST,纽约市纽约市纽约市纽约市10031,美国 *通信:yingyingfu2015@hotmail.com9土木工程系和NOAA-CREST,纽约市纽约市纽约市纽约市10031,美国 *通信:yingyingfu2015@hotmail.com