结果:FTD患者中MiR656,MiR423,MiR122和MiR885的WES鉴定的稀有种子变体。这些miRNA中的大多数与FTD相关基因结合,涉及不同的生物学途径。此外,一些miRNA变体创建了与FTD相关的基因的新型结合位点。与对照组相比,AD队列中MiR885基因座的测序最初显示出AD患者中MiR885变体的显着富集(SKAT-O,P值= 0.026)。遗传关联并不保持。使用Mirvas预测工具,变体RS897551430和RS993255773似乎引起了主要miRNA的显着结构变化。这些变体还预计将强烈下调成熟的miR885级别,这与在AD背景下报告的MiR885所报告的水平相一致。
AU:请确认所有标题级别均正确显示:成簇的规律间隔短回文重复序列 (CRISPR)-Cas12a 系统是基因编辑的强大工具;然而,crRNA-DNA 错配可能会引起不必要的切割事件,尤其是在 PAM 的远端。为了最大限度地减少这种限制,我们通过修改与靶 DNA 和 crRNA 链相互作用的氨基酸残基,设计了一种携带突变 S186A/R301A/T315A/Q1014A/K414A 的超保真 AsCas12a 变体(称为 HyperFi-As)。HyperFi-As 保留了与人类细胞中的野生型 AsCas12a (AsCas12aWT) 相当的靶向活性。我们证明 HyperFi-As 显著降低了人类细胞中的脱靶效应,并且与野生型相比,HyperFi-As 对 PAM 远端区域位置的错配容忍度明显较低。此外,采用改进的适当恒定力单分子 DNA 解拉链分析来评估 CRISPR/Cas 核糖核蛋白 (RNP) 复合物的稳定性和瞬态阶段。在 DNA-Cas12a-crRNA 复合物的解体过程中敏感地检测到了多种状态。在脱靶 DNA 底物上,与 AsCas12aWT 相比,HyperFi-As-crRNA 更难维持 R 环复合物状态,这可以准确解释为什么 HyperFi-As 在人类细胞中具有较低的脱靶效应。我们的研究结果提供了一种具有低脱靶效应的新型 AsCas12a 变体,尤其能够处理 PAM 远端区域的高脱靶。在单分子水平上,我们还揭示了 AsCas12a 变体在脱靶位点的行为方式,而用于评估 CRISPR/Cas RNP 复合物多种状态的解压缩分析可能对深入了解 CRISPR/Cas 的行为方式以及将来如何对其进行工程改造大有帮助。
从飞机上释放后,降落伞将下降速度限制在大约 30 米/秒。入水后,将部署一个水面浮标,其中包含用于声学数据遥测的甚高频发射器。全向和定向声学传感器信号被传输到机载或舰载声学处理器,用于对窄带、宽带和瞬态潜艇声发射进行被动检测。浮标还将以多静态或主动辅助角色检测低频主动发射和回声。
尽管新研究具有一些优势,尤其是在考虑大量潜在混杂因素方面,但作者承认了一些局限性。他们的研究人群的退伍军人人数很大一部分具有多种多样的人,并且不能代表美国普通人群,因此这些发现可能无法完全普遍。但是,由于主要兴趣是疫苗接种与结果之间的关系而不是事件之间的关系,因此不太可能对研究人群的组成产生严重的偏见。直接比较三角洲和Omicron时期是不可能的,这主要是因为这些时期之间的疫苗接种覆盖率差异很大。对老年人(例如60岁及以上)的单独分析将为他们的发现增加价值,因为免疫衰老在这个年龄段进行。
摘要:识别个体基因组中的遗传变异如今已成为人类遗传研究和诊断中的常规程序。然而,对于许多变异,尤其是非编码区域的变异,没有足够的证据来确定其致病作用。此外,候选变异的数量之多使得在单个检测中进行测试几乎是不可能的。虽然可扩展的方法正在开发中,但方法和资源的选择以及将给定框架应用于特定疾病或特征仍然是主要挑战。这限制了全基因组关联研究和基因组测序结果的转化。在这里,我们讨论了可用于非编码变异功能注释的计算和实验方法。
1 计算与系统生物学,纪念斯隆凯特琳癌症中心 2 斯坦福大学遗传学系,美国加利福尼亚州斯坦福 3 斯坦福大学计算机科学系,美国加利福尼亚州斯坦福 4 Altius 生物医学科学研究所,华盛顿州西雅图 5 杜克大学统计遗传学和基因组学中心,美国北卡罗来纳州达勒姆 27710 6 约翰霍普金斯大学医学院生物医学工程系,美国马里兰州巴尔的摩 21205 7 约翰霍普金斯大学彭博公共卫生学院生物统计学系,美国马里兰州巴尔的摩 21205 8 约翰霍普金斯大学医学院表观遗传学中心,美国马里兰州巴尔的摩 21205 9 哈佛大学 THChan 公共卫生学院流行病学系 10 杰克逊实验室,美国缅因州巴尔港 11 缅因大学生物医学科学与工程研究生院,缅因州奥罗诺美国。 12 美国加利福尼亚州斯坦福市露西尔帕卡德儿童医院贝蒂艾琳摩尔儿童心脏中心基础科学与工程计划 13 美国加利福尼亚州斯坦福市卡内基科学研究所植物生物学系 14 美国马萨诸塞州伍斯特市马萨诸塞大学陈医学院生物信息学与整合生物学项目 15 美国加利福尼亚州圣地亚哥市 Illumina 人工智能实验室 16 美国北卡罗来纳州达勒姆市杜克大学医学院生物统计学生物信息学系整合基因组学分部 17 美国北卡罗来纳州达勒姆市杜克大学计算生物学生物信息学项目 18 美国加利福尼亚州斯坦福市斯坦福大学病理学系 19 美国马萨诸塞州剑桥市布罗德研究所诺和诺德基金会疾病基因组机制中心 20 美国加利福尼亚州斯坦福市斯坦福大学斯坦福心血管研究所 21 布罗德麻省理工学院和哈佛大学研究所,美国马萨诸塞州剑桥 22 哈佛大学陈曾熙公共卫生学院生物统计学系 23 威尔康奈尔医学院生理学、生物物理学和系统生物学系 24 格斯特纳斯隆凯特琳生物医学科学研究生院
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。
通过分析来自各种癌症患者的数据,弗雷德·哈奇癌中心的杰伊·萨尔西(Jay Sarthy)小组已将短的H2A组蛋白变体确定为内源性的酒精酮和新型癌症睾丸抗原。简短的H2A(SH2A)组蛋白中所识别的变体具有与常见HLA等位基因结合的能力,因此充当免疫疗法的极好靶标。通过将SH2A变体与规范序列进行比较,发明家已经鉴定出经常与癌症相关的SH2A变体,并且在扩散的大B细胞淋巴瘤(DLBCL)中很突出。可以将针对这些表位的转基因T细胞受体的发展用于CAR T细胞疗法来控制肿瘤的生长。使用这些新型表位的T细胞免疫疗法的潜力不仅可以用于治疗非霍奇金淋巴瘤,而且可以用作其他多种其他癌症的治疗方法。
。CC-BY 4.0 国际许可,可在未经同行评审认证的情况下使用)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2024 年 4 月 1 日发布。;https://doi.org/10.1101/2024.04.01.587366 doi:bioRxiv 预印本