康奈尔大学综合植物科学学院植物转化设施,纽约州伊萨卡 14853,美国。现地址:Pairwise,807 East Main Street,Suite 4-100,Durham,NC 27701,美国
1。简介番茄(Solanum lycopersicum l。)是世界上几乎每个国家的田野和温室条件中广泛种植的世界主要蔬菜作物之一(Singh等,2017)。商业生产的西红柿被新鲜食用或用于生产番茄的产品。除了成为维生素A,C,K和钾的良好来源外,西红柿还与许多健康益处有关,因为其丰富的代谢物(如植物营养素,番茄红素和类胡萝卜素)(Tanambell等人,2019年)。其在食品行业的高消费和利用率导致番茄产量稳定,尤其是近年来。番茄也被用作模型植物,以了解水果质量改善,植物生殖增强和植物功能基因组学的遗传背景(Khan等,2006)。
1.基于CMOS的仪表放大器(INAS)用于可穿戴生物医学设备:在设计可穿戴应用的信号条件电路时,噪声和功率规格之间存在强大的权衡。为此,我们正在研究一些设计方法,以优化上述权衡。随着高密度无线网络设备的出现,EMI对前端电子设备的影响至关重要,这使我们探索了CMOS电路中的EMI方面。2.神经信号记录和刺激:生物神经元和电子设备之间的下一个人类计算机接口的范式。关于该主题和技术演示的科学文献的进步,例如Neuralink,使该领域非常有前途。为此,我们一直在研究基于CMO的神经放大器和刺激器电路的设计。3.基于CMOS的神经形态电路设计:随着AI和ML的出现,人们对开发基于Neumann架构的非VON NEUMANN架构平台引起了重大兴趣。我们正在研究完全兼容NM计算系统的各个方面,例如硅神经元,基于Memristor的突触重量,芯片学习电路以及跨杆阵列设计,考虑寄生虫,编码器和解码器电路,以与现实世界相连。4.使用SCL过程的原始IC开发:我们正在开发用于空间应用的高精度仪器的辐射硬化信号调理前端ASIC。通过蒙特卡洛分析,我们确保了对不匹配的设计耐受性。作为环振荡器被认为是CMOS技术表征的良好测试电路,我们使用180 nm SCL PDK设计了全数字温度传感器。层次后的仿真结果与分析推导非常吻合,并且通过在PVT跨PVT变化中模拟了所提出的设计,已测试了鲁棒性。
香蕉(Musa spp。)是全球重要的水果作物。真菌fusarium oxysporum f。 sp。cubense(foc)导致镰刀菌,被广泛认为是最具破坏性的植物疾病之一。fusarium Wilt先前已经破坏了全球香蕉的生产,并继续这样做。此外,由于目前使用高密度的香蕉种植园,具有理想植物建筑(IPA)的理想香蕉品种具有较高的耐药性,最佳的光合作用和有效的吸水性。这些特性可能有助于增加香蕉的产量。基因工程对于大多数品种的不育而具有焦点耐药性和理想植物建筑的香蕉品种的开发很有用。然而,基因工程带来的持续免疫反应总是伴随着降低的屈服。为了解决这个问题,我们应该对MUSA基因组进行功能遗传研究,并结合基因组编辑实验,以揭示免疫反应和香蕉中植物结构形成的分子机制。对与焦点抗性和理想结构相关的基因的进一步探索可能会导致具有理想结构和病原体超级耐药性的香蕉品种的发展。这种品种将帮助香蕉在全球范围内保持主食。
细菌疫病(BB)是实现高稳定的米粒产量的重要限制。已经确定并克隆了越来越多的BB抗性(R)基因,以增加抗稻病抗性繁殖的可用选择。但是,有必要了解R基因在水稻品种中的分布进行合理分布和繁殖。在这里,我们的基因分型基因,即XA4,XA7,XA21,XA23和XA27,使用相应的特定标记在中国广东省的70个主要品种中。我们的结果表明,在所有测试的品种中均未检测到61个品种携带XA4,只有三个携带的XA27和XA7,XA21或XA23。值得注意的是,只有33个品种表现出对病原体IV XO菌株的抗性。这些结果表明XA4不再适合在水稻繁殖中广泛使用,尽管XA4在测试品种中广泛存在。值得注意的是,在中国南部,病原IX的强烈毒性BB菌株迅速发展,发现XA23有效地赋予了对病原体IX菌株的抗性。随后,我们使用宽光谱XA23通过标记物辅助选择(MAS)结合了现场型型选择,成功地繁殖了两个新型的近交稻品种,并成为修复剂线和两个光周期和热敏感的基因雄性无菌(P/TGMS)系。所有开发的线条和衍生的杂种表现出对BB的增强性,其产量表现出色。我们的研究可能有可能促进近交和杂交水稻耐药性繁殖。
专门设计或改装用于军事用途的设备、相关设备和部件如下:...................................................................................................................................................... 27