本文已接受出版并经过完整的同行评审,但尚未经过文字编辑、排版、分页和校对过程,这可能会导致此版本与记录版本之间存在差异。请引用本文 doi: 10.1002/hep.32735
2型糖尿病(T2DM)的越来越多的患病率是由久坐的生活方式和不健康饮食引起的全球健康问题。超出血糖控制,T2DM会影响多个器官系统,从而导致各种并发症。传统上与心血管和微血管并发症有关,但新兴证据表明对肺部健康有显着影响。肺血管功能障碍和纤维化,其特征是在T2DM的个体中越来越认识到血管张力的改变和过度的细胞外基质沉积。T2DM的发作通常是糖尿病前期的,这是一种与糖尿病增加和心血管疾病风险有关的中等高血糖状态。本评论探讨了T2DM,肺血管功能障碍和肺纤维化之间的关系,重点是与糖尿病前期的潜在联系。肺血管功能,包括一氧化氮(NO),前列环蛋白(PGI2),内皮素-1(ET-1),血栓烷A2(TXA2)和血栓形成蛋白-1(THBS1)的作用,在T2DM和Prediaia的背景下进行了讨论。将T2DM与肺纤维化联系起来的机制,例如氧化应激,失调的固定信号传导和慢性炎症。突出显示了糖尿病前期对肺部健康的影响,包括内皮功能障碍,氧化应激和失调的血管活性介质。早期检测和糖尿病阶段的干预可能会减少与T2DM相关的呼吸并发症,从而强调针对血糖调节和血管健康的管理策略的重要性。需要进行更多研究T2DM和糖尿病前期肺并发症的机制。
诱导的多能干细胞(IPSC)源自使用四个Yamanaka转录因子对成年体细胞的重编程。自发现以来,干细胞(SC)领域就达到了重要的里程碑,并在疾病建模,药物发现和再生医学领域开设了多个门户。同时,聚类的定期插入短的短质体重复序列(CRISPR) - 相关蛋白9(CRISPR-CAS9)彻底改变了基因组工程的范围,从而允许产生遗传上修改的细胞系,并实现精确的基因组重组或随机插入/插入/删除的应用程序,用于使用WIREDIRESS,WIREDIRESS。心血管疾病代表着不断增加的社会问题,对潜在的细胞和分子机制的了解有限。IPSC分化为多种细胞类型与CRISPR-CAS9技术相结合的能力可以实现对潜在疗法的病理生理机制或药物筛查的系统研究。此外,这些技术可以通过调节靶向蛋白的表达或抑制来提供心血管组织工程(TE)方法的细胞平台,从而为设计新的细胞系和/或精细仿生生物仿生支架提供了可能性。本综述将重点介绍IPSC,CRISPR-CAS9的应用以及其在心血管TE领域的结合。特别是,将讨论此类技术的临床转换性,从疾病建模到药物筛查和TE应用。
缩写:ABPA,过敏性支气管肺曲霉病; ACE -2,血管紧张素转化酶2; BMPR2,骨形态发生蛋白受体2; Covid -19,2019年冠状病毒病; ECPC,内皮菌落形成细胞;内皮,内皮 - 间充质转变; EPC,内皮祖细胞;电动汽车,细胞外囊泡; HSC,造血祖细胞; IL -1β,白介素-1β; IL -6,白介素-6; IPVDC,感染和肺血管疾病财团; MAPK,有丝分裂原活化的蛋白激酶; MMP -9,基质金属蛋白酶-9; MPAP,平均肺动脉压; PA,肺动脉; PAH,肺动脉高压; pH,肺动脉高压; PVD,肺血管疾病; SARS -COV -2,严重的急性呼吸综合征冠状病毒2; SCH,血吸虫病; SCHHSD,血吸虫病 - 相关的严重前门肝纤维化; Scrnaseq,单细胞RNA测序; TGF -β,转化生长因子 - β。
糖尿病中的慢性高血糖状态导致葡萄糖和蛋白质,DNA和脂质之间的共价加合物通过称为Maillard反应的非酶过程形成。此过程导致形成高级糖基化末端产品(年龄)。3晚期终端产物是不可逆的大分子,并通过年龄受体(RAGE)发挥其生物学活性。4年龄之间的相互作用与愤怒之间的相互作用破坏了内皮细胞中氧化 - 还原反应,并触发炎症和血栓形成反应。狂暴,高度涉及促炎性反应和自身免疫性,有助于糖尿病血管病,炎症和动脉粥样硬化过程的进展。5,6此外,年龄段轴可导致活性氧(ROS)的产生增加,而低密度脂蛋白(LDL)的氧化,加剧的斑块形成。7
• Cardiovascular disease (CVD) remains the leading cause of death in the United States, accounting for 928,741 deaths in 2020.1 • In 2020, the leading cause of deaths attributable to CVD in the United States was coronary heart disease (CHD) at 41.2%, followed by stroke (17.3%), other CVD (16.8%), high blood pressure (12.9%), heart failure (9.2%)和动脉疾病(2.6%)。1•2018年至2019年美国,美国CVD总CVD的直接和间接成本为4073亿美元(直接成本为2514亿美元,生产率损失/死亡率为1559亿美元)。 1•平均而言,在美国,每36秒的CVD死亡。2•全球,CVD是死亡的主要原因,占2019年全球死亡的32%。1•2018年至2019年美国,美国CVD总CVD的直接和间接成本为4073亿美元(直接成本为2514亿美元,生产率损失/死亡率为1559亿美元)。1•平均而言,在美国,每36秒的CVD死亡。2•全球,CVD是死亡的主要原因,占2019年全球死亡的32%。
年轻时被诊断出患有2型糖尿病(T2D)的人正在增加,并且患心血管疾病的风险升高(CVD)(1)。先前的研究表明,诊断时糖尿病亚组除以年龄的差异表现出遗传危险因素的差异(2),并且患有早发T2D的糖尿病差异具有较高的T2D多基因风险评分(PRS)(3)。然而,与T2D诊断时与年龄相关的遗传异质性是否会影响过多的CVD风险仍然很大未知。与常见的土壤假设一致(4),我们假设在早发糖尿病患者中对CVD的遗传易感性增加。我们分析了来自两个前瞻性共同体的数据,以调查对较早的T2D诊断对事件CVD的遗传影响增加。此外,由于建议一种健康的生活方式来抵消CVD的遗传风险增加(5,6),因此我们探索了通过T2D诊断时的年龄通过健康的生活方式层次来修改对CVD的遗传影响。
缺氧诱导因子-1 A(HIF-1 A)在促进细胞对缺氧的适应中起关键作用,深刻影响了免疫血管微环境(IVM)和免疫疗法结果。HIF -1 A介导的肿瘤缺氧驱动血管生成,免疫抑制和细胞外基质重塑,创造了一种环境,可促进肿瘤进展和对免疫疗法的抗性。HIF-1 A调节关键途径,包括血管内皮生长因子的表达和免疫检查点上调,从而导致肿瘤 - 纤维化淋巴细胞功能障碍以及募集免疫抑制细胞(如调节性T细胞和髓样细胞)和髓样细胞的抑制细胞。这些改变降低了检查点抑制剂和其他免疫疗法的效率。最近的研究强调了针对HIF-1 A的治疗策略,例如使用药理学抑制剂,基因编辑技术和进行缺氧的治疗方法,这在增强对免疫疗法的反应方面表现出了希望。本评论探讨了IVM中HIF-1 A的作用的分子机制,其对免疫疗法抗性的影响以及潜在的干预措施,强调了需要创新方法来规避低氧驱动的免疫抑制在癌症治疗中。
全球心血管疾病(CVD)患病率持续上升,已成为全球人口死亡的主要原因。动脉粥样硬化(AS)是心血管疾病的主要诱因,它在早期悄无声息地开始,最终导致不良心血管事件,严重影响患者的生活质量或导致死亡。血脂异常,尤其是低密度脂蛋白胆固醇(LDL-C)水平升高,是 AS 发病机制中的独立危险因素。研究表明,动脉壁内异常的 LDL-C 积聚是动脉粥样硬化斑块形成的重要诱因。随着病情进展,斑块积聚可能破裂或脱落,导致血栓形成和完全的血液供应阻塞,最终导致心肌梗死、脑梗死和其他常见的不良心血管事件。尽管针对降低 LDL-C 的药物治疗已足够,但心脏代谢异常患者仍然面临较高的疾病复发风险,这凸显了解决 LDL-C 以外的脂质风险因素的重要性。最近的注意力集中在甘油三酯、富含甘油三酯的脂蛋白 (TRL) 及其残留物与 AS 风险之间的因果关系上。遗传学、流行病学和临床研究表明 TRL 及其残留物与 AS 风险增加之间存在因果关系,这种血脂异常可能是不良心血管事件的独立风险因素。特别是在患有肥胖、代谢综合征、糖尿病和慢性肾脏疾病的患者中,紊乱的 TRL 及其残留物水平会显著增加动脉粥样硬化和心血管疾病发展的风险。血浆中过量合成的TRLs的积累、参与TRLs脂肪分解的酶的功能受损以及肝脏对富含胆固醇的TRLs残留物的清除受损,可导致TRLs及其残留物在动脉中沉积,促进泡沫细胞形成和动脉壁炎症。因此,了解TRLs诱导的AS的发病机制并对其进行治疗可以减缓或阻止AS进展,从而降低心血管疾病的发病率和死亡率,特别是冠状动脉粥样硬化性心脏病。
结果:在完全调整混杂变量的多元逻辑回归中,我们的分析显示 TyG、TyG-BMI、TyG-WC 和 TyG-WHtR 与胸痛之间存在显著关联,调整后的 OR (95% CI) 分别为 1.21(1.05, 1.39)、1.06(1.01, 1.11)、1.08(1.04, 1.14)和 1.27(1.08, 1.48)。对于总 CVD,调整后的 OR 值(95% CI)分别为 1.32(1.08, 1.61)、1.10(1.03, 1.17)、1.13(1.06, 1.19)和 1.63(1.35, 1.97),其中 TyG、TyG-WC 和 TyG-WHtR 在 RCS 分析中呈现曲线关联(所有 P 非线性 < 0.05)。此外,ROC 曲线显示 TyG-WC 对总 CVD、冠心病 (CHD) 和心肌梗死 (MI) 具有最稳健的预测效能,而 TyG-WHtR 对心绞痛和心力衰竭具有最好的预测能力。