用大语言模型(LLM)推理和预测人类意见是必不可少的但具有挑战性的。当前的方法采用角色扮演的角色,但面对两个主要措施:LLMS甚至对一个无关的角色也很敏感,最多可以改变预期的30%; LLM无法战略性地推理人类。我们提出了开场链(COO 1),这是一种简单的四步解决方案建模,如何用personae推理,由价值 - 宽容 - 态度(VBN)the-Ory进行推理。COO将明确的人(人口统计学和意识形态)和卑鄙的人物(历史观点)区分了:(1)将无关的属性与显式人物过滤; (2)将隐式人物排名为选择top-k的优先列表; (3)提出新颖的VBN推理,以提取用户的环境和个人价值,信念和规范变量,以进行准确可靠的预测; (4)迭代VBN推理,并逐渐更大的隐式角色列表来处理潜在的角色不足。COO通过仅提示5个推论呼叫来有效地实现新的最新观点预测,从而将先前的技术提高了多达4%。值得注意的是,通过COO的数据进行微调LMS导致观点一致的模型明显高达23%。
“美国城市、城镇、社区、州、县、大都市区、邮政编码、区号和学校的本地指南。” 76 次观看45 次观看49 次观看39 次观看41 次观看36 次观看36 次观看37 次观看33 次观看37 次观看35 次观看35 次观看36 次观看40 次观看34 次观看45 次观看36 次观看39 次观看27 次观看35 次观看25 次观看37 次观看35 次观看32 次观看26 次观看29 次观看41 次观看24 次观看43 次观看25 次观看35 次观看30 次观看39 次观看27 次观看27 次观看30 次观看27 次观看22 次观看31 次观看30 次观看24 次观看26 次观看26 次观看31 次观看31 次观看29 次观看22 次观看40 次观看26 次观看24 次观看30 次观看40 次观看25 次观看26 次观看25 次观看19 次观看93 次观看80 次观看69 次观看84 次观看61 次观看63 次观看70 次观看83 次观看91 次观看105 次观看52 次观看57 次观看89 次观看67 次观看74 次观看88 次观看71 次观看55 次观看82 次观看52 次观看80 次观看73 次观看49 次观看69 次观看51浏览次数56 浏览次数56 浏览次数55 浏览次数60 浏览次数41 浏览次数65 浏览次数50 浏览次数65 浏览次数50 浏览次数41 浏览次数43 浏览次数52 浏览次数45 浏览次数55 浏览次数49 浏览次数43 浏览次数52 浏览次数62 浏览次数49 浏览次数44 浏览次数 从 0 天 0 小时 00 分钟 00 秒 分享此优惠 送货需要至少 7 个工作日才能发货 购买的物品可以从我们的办公室领取或送货 物品必须在 2021 年 6 月 27 日之前领取/收到 未在 2021 年 6 月 27 日之前领取/收到的物品将被没收,不予退款 您的产品可立即领取 - 详情请参阅下文 无现金价值/无现金返还/不退款 立即检查产品;自收到产品之日起 7 天内有缺陷退货,前提是退回的物品未使用且