摘要 航空安全经常与医疗保健安全进行比较。在本期刊最近发表的一篇文章之后,英国政府成立了独立患者安全调查服务机构,以效仿航空领域类似的成熟机构。在详细审查了在航空实践背景下研究患者安全的相关出版物的基础上,我们制定了一个比较特征表和患者安全概念框架。得出并记录了航空和医疗保健领域安全相关行为的趋同和分歧。出现的关键安全相关领域包括清单、培训、机组资源管理、无菌驾驶舱、事件调查和报告以及组织文化。我们得出的结论是,虽然医疗保健在某些关键领域可以从航空业学到很多东西,但将航空业的经验教训转移到医疗保健行业需要细致入微,要考虑到医疗保健的具体特点和需求。根据本次审查,建议医疗保健行业应效仿航空业,为专门研究人为因素和患者安全和员工福祉相关心理方面的员工提供资源。专业和资格后员工培训可以特别包括认知偏差避免培训,因为这似乎在许多与患者安全和员工福祉有关的错误中发挥着关键作用。
与Pick and Place Arm 1 Pallavi A. Malwade,2 M.S.和Hare 1,2 Pvpit Engg。,Bavdhan,Bavdhan,PVPIT Engg。,Bavdhan Abstraction-Bavdhan,Bavdhan,Bavdhan 2 M.S. andhare 1,2 PVPIT学院的最佳电池充电BAVDHAN-机器人现在在所有领域中更常见。由于其准确性和韧性,它甚至可以代替人类。作为在机器人中使用的电池充电的过程是由人类携带的,其电源单元是其可靠性的缺点。这使机器人取决于人类。即使有一个用于使用太阳能电池板自动充电电池的系统,但在机器人中没有进行其他功能。在我们的论文中,我们将专注于在轨道太阳能电池板的帮助下设计和构建用于Li-Po电池的优化充电系统。因此,我们实施了追踪的太阳能电池板能源管理系统,我们将将其应用于机器人勘探工具。我们系统的目的是开发一种新的独立无人勘探工具,专门使用机器人武器识别并放置一个物体。该机器人系统的设计和概念基于智能主机微控制器。智能主机微控制器具有两个重要的优势。一方面,它构建了太阳能跟踪机制,以提高流动站的力量,而不论其机动性如何。另一方面,它基于两支电池提供了电源系统性能的替代设计。索引项 - Li-Po电池,光伏(PV),机器人车辆,太阳能跟踪,拾取和放置臂。目的是完成独立充电电池的过程,而另一个电池可提供机器人车辆消耗的所有能量。
RS- 源极电阻( Ω ) RSH- 漏极/源极扩散的薄层电阻( Ω / ) CBD- 零偏置漏极-体结电容(F) CBS- 零偏置源极-体结电容(F) MJ- 体结渐变系数(无量纲) PB- 体结的内置电位(V) • 使用 CBD、CBS、MJ 和 PB,SPICE 可计算漏极-体和源极-体电容的电压依赖性:
Powervamp 是英国独一无二的公司,既是软件设计者,又是行业领先固态 GPU 的制造商。其理念是通过大尺寸的电气和电子元件实现无与伦比的可靠性。由于所有功率级组件都位于一个拉出式模块中,可在几分钟内更换,因此停机和故障查找不再是问题。在机场压力巨大的前线运营环境中,PV90-3 是一种不需要经过培训的技术人员支持的转换器。Powervamp 的 PV90-3 旨在成为零停机 GPU,只需最低限度的计划维护。
连接管理可以自动化,并由外部地面应用程序(例如,ATC 程序或自动化)驱动,达到民航局 (CAA) 或服务提供商所需的程度。完全手动的连接管理方法(如纯语音系统中所需的)始终是一种选择。或者,可以使用半自动化方法,即在地面用户启动下将新信道分配上行链路到适当的机载无线电,然后由飞行员“激活”以实现实际的信道更改。最后,可以使用完全自动化的方法,即在无需地面用户干预的情况下,在外部地面应用程序的直接控制下将新信道分配上行链路到适当的机载无线电,然后由飞行员“激活”以实现更改。