周黄 a 、陈成汉 a 、阿卜杜萨拉姆·阿卜都克里木 a 、子浩博 a 、陈伟 a 、陈迅 a,t 、陈云华 h 、陈成 o 、程兆堪 p 、崔相宜 m 、范英杰 q 、方德清 r 、毛昌波 、付孟廷 g 、耿力生 b,c,d 、卡尔·吉博尼 a 、顾林辉 a 、郭旭源 a 、何昌达 a 、何金荣 h 、黄迪 a 、黄彦林 s 、侯汝泉 t 、吉向东 l 、军永林 、李晨翔 a 、李家福 、李明传 h 、林淑 n 、李帅杰 m 、清林 e,f 、刘江来 a,m,t,1 、陆晓英 j,k 、罗灵隐克,罗云阳 f , 马文波 a , 马尔玉刚 , 毛亚军 g , 孟跃 a,t , 宁旭阳 a , 宁春齐 h , 钱志成 a , 香香任 j,k , Nasir Shaheed j,k , 尚松 h , 尚晓峰 a , 沉国芳 b , 林斯 a , 孙文亮 h , 谭安迪 l , 陶毅 a,t , 安庆王 j,k , 王萌 j,k , 王秋红 r , 王少波 a,1 , 王四光 g , 王伟 o , 王秀丽 n , 王周 a,t,m , 魏月欢 p , 吴萌萌 o , 吴伟豪 a , 夏经凯 a , 肖孟娇 l , 肖翔 o , 谢鹏伟 m , 严彬彬 a,t , 严希宇 s ,杨吉军 a 、杨勇 a 、于春旭 q 、袁居民 j,k 、袁哲 r 、曾新宁 a 、张丹 l 、张敏珍 a 、张鹏 h 、张世波 a 、张舒 o 、张涛 a 、张迎新 j,k 、张媛媛 m 、李赵 a 、郑其斌 s 、周吉芳 h 、宁周 a,t, * ,周小鹏 b , 周勇 h , 周玉波 a
摘要 - 依赖性量化(DQ)是多功能视频编码(VVC)标准中的关键编码工具之一。dq采用两个标量量化器,每个标量量化器的选择受奇偶元驱动的四州状态机的控制。由于设计是规范上执行的,因此DQ的使用需要汇率优化的量化(RDOQ),并具有每个系数决策和状态更新,例如基于网格的量化,最初针对VVC参考软件(VTM)提出。由于其固有的依赖性(包括基于先前编码的系数值的VVCS上下文选择)以及相当广泛的搜索范围,因此Trellis量化在计算上是高度复杂的。降低该算法的复杂性对于实用的VVC编码器至关重要。在本文中,我们提出了一个快速依赖的量化格子搜索,通过以下方式改进了初始设计:不可能的分支的格子修剪,正向自适应上下文传播,最后是矢量化的实现。在开放和优化的VVEND编码器中提出的建议方法将量化运行时减少了37%,允许在中等预设中总体15%的编码器加速,而在全intra编码条件下对压缩性能没有影响。在随机访问条件下,实现了9%的整体编码器加速。索引项 - VVC,VVEN,量化,格子,矢量。
项目详细信息项目代码MRCIIAR25EX SANDERS标题质粒作为AMR矢量研究主题感染,免疫,抗菌素抵抗和修复摘要抗微生物抗性(AMR)正在升至危险的高水平,从而导致全球健康危机。要制定打击AMR的策略,我们需要知道AMR基因如何扩散。质粒作为无处不在的移动遗传元素是AMR传播的关键参与者。抗生素使携带AMR质粒有益于其细菌宿主,因此驱动质粒患病率和进化。该项目将研究可以在微生物组内和之间传播抗性的高度传播AMR质粒的演变。这将通过使用质粒基因组学和网络分析的针对性实验和对复杂微生物组的研究来完成。描述背景抗生素在临床和农业环境中的广泛使用导致抗生素耐药性的快速发展和传播,导致重大健康危机(1)。细菌可以通过突变或吸收抗药性基因获得对抗生素的抗性(2)。质粒在抗菌耐药性(AMR)基因的扩散中起关键作用(3),因为它们在不同细菌之间转移的能力(4)。质粒相互作用的不同细菌宿主的范围,即质粒通用主义,因此对于AMR的扩散至关重要。有证据表明抗生素可以增强质粒通用性,这不仅可以促进AMR基因在选择下的传播,而且还可以允许其他AMR基因与通用质粒一起搭档(5)。这可能导致多药抗性质粒在微生物群落中的传播,更令人担忧的是,在环境,农业和临床微生物中,这是OneHealth概念中承认的威胁(2)。AMR质粒扩散,当降低抗生素选择时会减少。但是,尚不清楚是否是这种情况。质粒可以迅速发展(6),并且持续暴露于多个宿主可能导致质粒的演变,这些质粒在微生物中传播更为成功(7)。即使是单一抗生素的暴露也可能导致质粒的演变,这些质粒通常是AMR基因的高度感染矢量。该项目旨在确定质粒如何变为可传播的AMR载体。将经过实验测试,与环境相关的抗生素暴露方式如何塑造质粒通用,并确定质粒上的分子/功能变化。该项目将进一步研究AMR质粒在复杂社区(宿主质量网络)和病原体与理论建模相结合的传播。关键问题是进化的质粒通用性,AMR的驱动因素扩散到微生物中的病原体吗?随着质粒通用的增加,我们可以期望宿主质差网络的结构发生重大变化,变得更加互连,质粒在
重组腺相关病毒(RAAV)载体目前是通过基因疗法治疗眼科疾病的唯一经过验证的车辆。目前正在采用针对眼部疾病的广泛基因治疗计划。将近20年的研究已经增强了靶向视网膜组织并改善转基因对特定细胞类型的效率。工程化的AAV CAPSID,AAV2.7M8目前是玻璃体内(IVT)注射后转导视网膜的最佳衣壳之一。然而,在视网膜在临床试验中施用AAV2.7M8载体后,已经报道了包括眼内炎症在内的不良反应。此外,我们一直观察到AAV2.7M8表现出低包装滴度,而与矢量构造设计无关。在本报告中,我们发现AAV2.7M8包装矢量基因组具有比AAV2更高的程度。我们还发现,基因组加载的AAV2.7M8刺激了IVT给药后小鼠视网膜中小胶质细胞的纤维化,而对基因组负载的AAV2和空的AAV2.7M8 capsids的反应产生了很多较轻的响应。这个发现表明,IVT施用AAV2.7M8载体可能会刺激视网膜免疫反应,部分原因是它偏爱包装和提供非单位长度基因组。
摘要。相位模型(例如Allen-CaHn方程)可能会引起几何形状的形成和演变,这种现象可以在适当的缩放方案中进行严格分析。在其尖锐的界限限制下,已经猜想了具有n 3不同最小值的电势的矢量allen-cahn方程,以通过多相平均曲率流量来描述分支接口的演变。在目前的工作中,我们在两个和三个环境维度和适当的一类潜在的情况下给出了严格的证据:只要存在多态度平均曲率流的强大解决方案,就可以解决矢量allen-cahn方程,并具有良好的初始数据汇总到多型固定固定构型固定端口的限制范围内的范围范围范围的弯曲范围范围范围的范围,我们甚至建立了收敛速度。”1 = 2 /。我们的方法基于Allen-Cahn方程的梯度流结构及其限制运动:基于用于多相平均曲率流的最新概念“梯度流校准”的概念,我们引入了矢量allen – Cahn方程的相对熵的概念。这使我们能够克服其他方法的局限性,例如避免需要对艾伦 - 卡纳操作员进行稳定性分析,或在积极时为能量的其他收敛假设。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 7 月 26 日发布。;https://doi.org/10.1101/2024.07.25.605222 doi:bioRxiv 预印本
我们很高兴地宣布,在 COST ACTION 2111-OneHealthdrugs – “欧洲及其他地区针对寄生虫传播疾病的 One Health 药物” ( https://onehealthdrugs.com/ ) 的背景下,举办了国际研讨会“用于媒介传播疾病的新型线索和药物:靶标和脱靶(毒性和生态毒性)以及作用机制”。COST Action 网络旨在根据这些生物体的最佳特性原则,协调发现可在人类和兽医环境中阻止媒介传播感染的药物,从而提高质量并减少对环境的影响。
b'we提出了一个以福利为中心的博览会加强学习环境,在该环境中,代理商享受一组受益人的矢量值得奖励。给定福利函数W(\ xc2 \ xb7),任务是选择一个策略\ xcb \ x86 \ xcf \ x80,该策略大约优化了从start state s 0,即\ xcb \ xcb \ x86 \ xcf \ xcf \ xcf \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ xmax \ xcf \ x80 w v \ xcf \ x80 1(s 0),v \ xcf \ x80 2(s 0),。。。,v \ xcf \ x80 g(s 0)。我们发现,福利最佳政策是随机的,依赖起始国家的。单个行动是错误是否取决于策略,因此错误的界限,遗憾分析和PAC-MDP学习不会容易概括为我们的设置。我们开发了对抗性的KWIK(KWIK-AF)学习模型,其中在每个时间步中,代理要么采取勘探行动或输出剥削策略,因此勘探行动的数量是有限的,并且每个利用策略都是\ xce \ xce \ xb5-Welfelfare-welfelfare-Wertal的最佳。最后,我们将PAC-MDP减少到Kwik-af,引入公平的显式探索漏洞利用者(E 4)学习者,并证明其Kwik-af学习了。
遗传性视网膜营养不良是一组稀有遗传疾病的异质群,会导致视力丧失,并且是包括RPE65基因在内的260多种不同基因中种系突变的结果。2,3 RPE65基因负责RPE65蛋白的产生,RPE65蛋白是一种酶,将全反归因基因转化为11-CIS-他醇,随后在视觉(视网膜类动物)循环中形成了11- cis-totinal的生物团,鼠视鼠。这些步骤对于将光子的光子转化为视网膜内的电信号至关重要。RPE65基因中的突变导致RPE65全反性返带异构酶活性减少或缺乏视觉周期的阻断。 全反归因基的积累会导致感光细胞的细胞凋亡和视力逐渐丧失。 2,4RPE65基因中的突变导致RPE65全反性返带异构酶活性减少或缺乏视觉周期的阻断。全反归因基的积累会导致感光细胞的细胞凋亡和视力逐渐丧失。2,4
