要允许复制或重新出版,请联系美国航空与宇航学院1801 Alexander Bell Drive,Suite 500,Reston,VA,20191–4344
活动日期 2024 年 7 月 22 日 活动和讲座标题 运载火箭技术客座讲座 资源名称 演讲者 Dr.Umamaheswaran R 杰出科学家、印度空间研究组织前科学秘书、载人航天中心前主任 参加人数 600 地点 Dr. MV Jayaraman 礼堂
1简介汽车行业已成为电动驱动器和电力产品的主要市场。准确的交流电流(AC)和直流电流(DC)电动机在电源转换器供电的广泛的功率和速度上,基于隔热栅极双极晶体管,具有复杂的监控和管理系统已成为现代车辆的固有部分[1]。在这种情况下,探索和测试平台的电池驾驶电动汽车(BEV)完全由电动机推动,如今已引起人们的极大关注。他们允许学习并优化车辆性能,减少真实机器的测试次数并提供安全性。许多研究机构和越来越多的工程学校在其实验室中引入了测试工作台[2]。严重的参考文献描述了在不同的
制定基于地理信息系统 (GIS) 的总体/发展规划是 AMRUT 下的重要改革之一。这项改革的目标是利用 GIS 为 AMRUT 计划下的所有城市制定总体规划,并开发通用的数字地理参考基础地图和土地利用图。然而,中小型城镇使用传统 GIS 技术制定总体规划的能力有限,因此,该部希望探索使用无人机 (UAV) 技术为这些城镇制定基于 GIS 的总体规划。为此,在印度测量总监的主持下成立了一个委员会,负责制定应用无人机技术为中小型城镇制定基于 GIS 的总体规划的设计和标准(参见 2018 年 9 月 26 日发布的命令号 K-14031/5/2016-AMRUT(CB)-Part(2))。
开创性巩固了Syensqo对美国电动汽车电池供应链的关键支持,并在佐治亚州奥古斯塔(Augusta)的新生产设施(美国电池带的核心)
Laneless和无方向运动是高速公路网络中连接和自动化车辆(CAVS)的轨迹行为的新型特征。应用此概念可以利用高速公路的最大潜在能力,尤其是在分布不均的方向需求下。尽管如此,消除了在车道和方向的分离域上的传统概念,因此可以增加混乱的驾驶行为和碰撞风险(从而损害安全性)。因此,本文的重点是在这种未来派环境中为骑士的轨迹规划,其双重目标是(i)提供和确保安全性,而(ii)提高了绩效性能。为此,我们提出了一种骑士的算法,以区分潜在的冲突车辆与自己的方向和/或反对的传播流(整个本文档中所谓的威胁)在早期(及时)阶段。之后,威胁工具被聚集为威胁群体。作为下一步,开发了一个分散的非线性模型预测控制(NLMPC)框架,以调节每个单个威胁集群中车辆的运动;从这个意义上讲,这是分别应用于每个群集中的分布式控制器。该控制方法的设计方式可以实现上述双重目标,结合了官能安全性和效率。最后,通过微观仿真研究对所提出的方法的性能进行了研究和评估。结果是有希望的,并确认了公路网络所提出的方法的效果。
根据 NITI Aayog (2022) 的数据,印度电动汽车电池再利用市场的增长将从 2023 年的 2 GWh 增加到 2030 年的 128 GWh。为了加快这一增长速度,应重点改进当前的检测技术和政策,以确保电池的安全和可持续的可重复使用性和可回收性。有关退役电动汽车电池测试和认证的法规应成为核心。此外,测试技术的进步将是提高这些流程效率的关键。初创企业也应该抓住这个新兴领域的机遇,利用尖端的检测技术推动电池再利用和回收市场的创新和增长。
1。重组质粒设计7 2。初始质粒提取7 3。消化和连接7 4。转换8 5。质粒提取,纯化和DNA测序8 6。蛋白质表达8 7。蛋白质纯化9
