随着发展中国家生活质量的提高和全球变暖,全球对空调的需求正在迅速增加。政府间气候变化专门委员会(IPCC)估计,仅住宅空调的需求就将从 2000 年的每年 300 太瓦时 (TWh/年) 上升到 2050 年的 4000 和 2100 年的 10,000(Henley 2015)。其他估计预测,制冷需求将在 2070 年左右超过供暖需求,如图 1 所示(Isaac and van Vuuren 2009)。空调系统的能源成本可能非常高,特别是在岛屿地区,由于依赖液体化石燃料作为主要发电资源,电力成本通常很高。位于温跃层之下的深海是一个几乎无限的吸热器(冷却源),为在海边开发成本较低的区域制冷系统创造了机会。海水空调 (SWAC) 是一种区域冷却技术,利用深层冷海水进行冷却,即使在热带地区,深层冷海水的温度也可低至 3 – 5 °C (美国国家海洋和大气管理局,2018 年),如图 2 所示。人们广泛研究了海洋表面和深层海洋之间的温差,以用于发电和海水淡化目的 (Khosravi 等人,2019 年;Jung 和 Hwang,2014 年;Semmari 等人,2012 年;Odum,2000 年)。SWAC 于 1970 年代开始被考虑,并在 1990 年代初获得了发展势头。它适用于热带和赤道地区,这些地区海底水深测量允许使用相当短的冷海水引水管道 (Syed 等人,1991 年)。 SWAC 取代了传统空调系统中使用的冷却器,大大降低了电力消耗和制冷成本(Makai Ocean Engineering 2015 )。SWAC 系统的电力成本通常比传统空调系统低 80%(Van Ryzin and Leraand 1991;Van Ryzin and Leraand 1992 ),约占 SWAC 总项目成本的 20%(拉丁美洲发展银行 2015 )。这些制冷需求项目应尽可能大,目的是通过规模经济降低项目总成本
当前,现代通信和导航系统中的紧急任务之一是提高各种设备之间时间尺度的同步精度[1-9]。这对于在进行地球表面,高层大气层,高速信息的传播和处理的调查过程中获得可靠的结果是必不可少的[7-17]。取决于时间尺度同步所需的准确性,系统中使用了不同的频率标准模型。解决此问题的最佳解决方案是使用量子频率标准(QFS)。在各种导航系统的量子频率标准中,最流行的是rubidium QF,因为与其他类型的QF相比,它们的尺寸较小,成本较低。这些关键优势允许使用由小型rubidium手表组成的rubidium标准,这些手表在移动通信的基站和通信卫星的船件上广泛使用[4,18-21]。这样的系统应该长时间自主工作。因此,用于其中的信息处理,用于各种光学系统[20-26]。
25 请参阅补充信息以了解 (I) 对退火后的 Pt/Co/Gd 堆栈进行的 SQUID M(T) 测量分析;(II III) 对在不同 Ta 下退火的样品进行多达 10 个后续激光脉冲的测量;(III) 对具有不同 Ta 的 Pt/Co/Gd 堆栈进行的脉冲能量相关的 AOS 测量;(IV) 按正常比例绘制的 DW 速度与 Hz 的关系;以及 (V) 在退火后的 Pt/Co/Gd 堆栈上进行的 HDMI 测量。
ii.摘要................................................................................................................................................ 6
多普勒测速仪被添加到此传感器套件中以提高滤波器的性能。作为滤波器的一个组成部分,磁罗盘和陀螺罗盘偏差被估计
1 2 3 4 MD-82 商用客机头等舱的精确高分辨率边界条件和流场 6 7 刘伟 1 , 温继洲 1 , 赵江月 1 , 尹伟友 1 , 沈晨 1 , 赖代一 1 , 林朝欣 8 2 , 刘俊杰 1 , 孙河江 1,* 陈庆艳 1,3 9 10 1 天津大学环境科学与工程学院,天津 300072,11 中国 12 2 波音民用飞机环境控制系统,华盛顿州埃弗里特 98203,美国 13 3 普渡大学机械工程学院,印第安纳州西拉斐特 47907,美国 14 15 * 电子邮件地址:sunhe@tju.edu.cn 16 17 摘要 18 19商用客机客舱对于创造热舒适和健康的客舱环境至关重要。除了客舱几何形状和家具外,流场还取决于扩散器处的热流体边界条件。为了研究客舱内的流场,本文介绍了一种获取客舱几何形状、扩散器边界条件和流场的程序。本研究使用激光跟踪系统和逆向工程生成了 MD-82 飞机客舱的数字模型。尽管该系统的测量误差很小,但仍然需要近似和假设以减少工作量和数据量。几何模型还可用于轻松计算空间体积。采用热球风速计 (HSA) 和超声波风速计 (UA) 组合来获取扩散器处的速度大小、速度方向和湍流强度。测量结果表明,实际客舱内的流动边界条件相当复杂,速度大小、速度方向和湍流强度在不同缝隙开口之间差异很大。还使用 UA 测量 20 Hz 下的三维空气速度,这也可用于确定湍流强度。由于流动的不稳定性,应至少测量 4 分钟才能获得准确的平均速度和湍流信息。结果发现,流场速度低、湍流强度高。这项研究为验证计算流体力学 (CFD) 模型提供了高质量数据,包括客舱几何形状、扩散器边界条件和 MD-82 商用客机头等舱的高分辨率流场。 关键词:客机客舱;客舱几何形状;流场;实验;扩散器 41 42 1. 引言 43 44 商用客机客舱中的空气分布用于维持乘客和机组人员的热舒适度 45 和空气质量。这些空气分布可以控制空气温度和 46 空气速度场,并可以稀释气体和颗粒浓度。尽管 47 航空航天工业在过去 48 十年中已经改善了飞机客舱的热舒适度和卫生状况(Space et al.,2000),空气分配系统需要进一步改进。49